Home
Class 11
MATHS
The number of normals to the hyperbola (...

The number of normals to the hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1` from an external point, is

A

`2`

B

`4`

C

`6`

D

`3`

Text Solution

Verified by Experts

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • HYPERBOLA

    OBJECTIVE RD SHARMA|Exercise Exercise|56 Videos
  • FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|1 Videos

Similar Questions

Explore conceptually related problems

Find the equations of the tangent and normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at the point

Show that the equation of the normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at the point (a sqrt(2),b) is ax+b sqrt(2)y=(a^(2)+b^(2))sqrt(2)

Knowledge Check

  • The line lx+my=n is a normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 if

    A
    `(a^(2))/(l^(2))+(b^(2))/(m^(2))=((a^(2)+b^(2))^(2))/(n^(2))`
    B
    `(a^(2))/(l^(2))-(b^(2))/(m^(2))=((a^(2)-b^(2))^(2))/(n^(2))`
    C
    `(a^(2))/(l^(2))-(b^(2))/(m^(2))=((a^(2)+b^(2))^(2))/(n^(2))`
    D
    none
  • Locus of perpendicular from center upon normal to the hyperbola (x^(2))/(a^(2)) -(y^(2))/(b^(2)) =1 is

    A
    `(x^(2)-+y^(2))^(2)((a^(2))/(x^(2))+(b^(2))/(y^(2))) =(a^(2)-b^(2))^(2)`
    B
    `(x^(2)+y^(2))^(2)((a^(2))/(x^(2))-(b^(2))/(y^(2)))=(a^(2)+b^(2))^(2)`
    C
    `(x^(2)+y^(2))^(2) ((x^(2))/(a^(2))-(y^(2))/(b^(2))) =(a^(2)+b^(2))^(2)`
    D
    None of these
  • Let P(6,3) be a point on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 . If the normal at the point P intersects the x-axis at (9,0) then the eccentricity of the hyperbola is

    A
    `sqrt((5)/(2))`
    B
    `sqrt((3)/(2))`
    C
    `sqrt(2)`
    D
    `sqrt(3)`
  • Similar Questions

    Explore conceptually related problems

    The point (at^(2),2bt) lies on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 for

    The locus of the point of intersection of the tangents at the end-points of normal chords of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , is

    The coordinates of the point at which the line 3x+4y=7 is a normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1, are

    The number of tangents and normals to the hyperbola (x^(2))/(16)-(y^(2))/(25)=1 of the slope 1 is

    Let P(6,3) be a point on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2)) =1. If the normal at the point P intersects the x- axis at (12,0). Find the eccentricity of the hyperbola. (sqrt(2)=1.41)