Home
Class 11
MATHS
If log(2)(5.2^(x)+1),log(4)(2^(1-x)+1) a...

If `log_(2)(5.2^(x)+1),log_(4)(2^(1-x)+1)` and 1 are in A.P,then x equals

A

`log_(2)5`

B

`1-log_(2)5`

C

`log_(5)2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( x \) such that the logarithmic expressions \( \log_{2}(5 \cdot 2^{x} + 1) \), \( \log_{4}(2^{1-x} + 1) \), and \( 1 \) are in Arithmetic Progression (A.P.). ### Step-by-Step Solution: 1. **Understanding A.P. Condition**: For three terms \( a, b, c \) to be in A.P., the condition is: \[ 2b = a + c \] Here, let: \[ a = \log_{2}(5 \cdot 2^{x} + 1), \quad b = \log_{4}(2^{1-x} + 1), \quad c = 1 \] 2. **Express \( b \) in terms of base 2**: We can convert \( b \) from base 4 to base 2: \[ \log_{4}(2^{1-x} + 1) = \frac{\log_{2}(2^{1-x} + 1)}{\log_{2}(4)} = \frac{\log_{2}(2^{1-x} + 1)}{2} \] 3. **Substituting into the A.P. condition**: Substitute \( a \), \( b \), and \( c \) into the A.P. condition: \[ 2 \left( \frac{\log_{2}(2^{1-x} + 1)}{2} \right) = \log_{2}(5 \cdot 2^{x} + 1) + 1 \] Simplifying gives: \[ \log_{2}(2^{1-x} + 1) = \log_{2}(5 \cdot 2^{x} + 1) + 1 \] 4. **Using properties of logarithms**: Recall that \( \log_{2}(a) + 1 = \log_{2}(2a) \). Thus, we can rewrite the equation: \[ \log_{2}(2^{1-x} + 1) = \log_{2}(2(5 \cdot 2^{x} + 1)) \] 5. **Equating the arguments**: Since the logarithms are equal, we can set the arguments equal to each other: \[ 2^{1-x} + 1 = 2(5 \cdot 2^{x} + 1) \] 6. **Expanding and simplifying**: Expanding the right-hand side: \[ 2^{1-x} + 1 = 10 \cdot 2^{x} + 2 \] Rearranging gives: \[ 2^{1-x} - 10 \cdot 2^{x} - 1 = 0 \] 7. **Substituting \( 2^{x} = y \)**: Let \( y = 2^{x} \). Then \( 2^{1-x} = \frac{2}{y} \): \[ \frac{2}{y} - 10y - 1 = 0 \] Multiplying through by \( y \) to eliminate the fraction: \[ 2 - 10y^2 - y = 0 \quad \Rightarrow \quad 10y^2 + y - 2 = 0 \] 8. **Applying the quadratic formula**: Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 10, b = 1, c = -2 \): \[ y = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 10 \cdot (-2)}}{2 \cdot 10} = \frac{-1 \pm \sqrt{1 + 80}}{20} = \frac{-1 \pm \sqrt{81}}{20} = \frac{-1 \pm 9}{20} \] This gives: \[ y = \frac{8}{20} = \frac{2}{5} \quad \text{or} \quad y = \frac{-10}{20} = -\frac{1}{2} \quad (\text{not valid since } y > 0) \] 9. **Finding \( x \)**: Since \( y = 2^{x} \), we have: \[ 2^{x} = \frac{2}{5} \quad \Rightarrow \quad x = \log_{2}\left(\frac{2}{5}\right) = 1 - \log_{2}(5) \] ### Final Answer: Thus, the value of \( x \) is: \[ x = 1 - \log_{2}(5) \]

To solve the problem, we need to determine the value of \( x \) such that the logarithmic expressions \( \log_{2}(5 \cdot 2^{x} + 1) \), \( \log_{4}(2^{1-x} + 1) \), and \( 1 \) are in Arithmetic Progression (A.P.). ### Step-by-Step Solution: 1. **Understanding A.P. Condition**: For three terms \( a, b, c \) to be in A.P., the condition is: \[ 2b = a + c ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If 1,log_(2)(3^(1-x)+2),log_(2)(4*3^(3)-1) are in A.P then x equals to

If 1,log_(9)(3^(1-x)+2),log_(3)(4*3^(x)-1) are in A.P then x equals to

If log_(10) 2, log_(10)(2^(x) -1) , log_(10)(2^(x)+3) are in AP, then what is x equal to?

If log_(10)(2),log_(10)(2^(x)+1),log_(10)(2^(x)-3) are in A.P then x is equal to (i)log_(2)(5)( ii) log_(2)(-1) (iii) log_(2)((1)/(5))( iv) log_(5)(2)

If 1,log_(3)sqrt(3^(1-x)+2),log_(3)(4*3^(x)-1) are in AP then x equals

log_(2)(x^(2)-1)=log_((1)/(2))(x-1)