Home
Class 11
MATHS
If 0 le a le x, then the minimum value o...

If `0 le a le x`, then the minimum value of
`"log"_(a) x + "log"_(x)` is

A

1

B

2

C

0

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

We have,
`0 le a le x`
`rArr "log"_(a) x ge 1`
`rArr "log"_(a) x + "log"_(x) x ge 1 + "log"_(x) x = 1 + 1 =2`
Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of log_(a)x+log_(x)a,0

If f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))),AA 0 le x le 1 then the minimum value of f(x) is

For 0

For x>1, the minimum value of 2log_(10)(x)-log_(x)(0.01) is

The minimum value of the function f(x) = x log x is

If g(x)=max(y^(2)-xy)(0le yle1) , then the minimum value of g(x) (for real x) is

x>0,y>0 and x+y=1. The minimum value of x log x+y log y is

x>0,y>0 and x+y=1. The minimum value of x log x+y log y is

The maximum value of |x log x| for 0 lt x le 1 is

Solve 2 log_(3) x - 4 log_(x) 27 le 5 .