Home
Class 11
MATHS
The value of "log"(5) (1+ (1)/(5)) + ...

The value of
`"log"_(5) (1+ (1)/(5)) + "log"_(5) (1+(1)/(6)) + "log"_(5)(1+(1)/(7)) + …. + "log"_(5)(1+(1)/(624))` is

A

5

B

4

C

3

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \text{log}_{5} \left(1 + \frac{1}{5}\right) + \text{log}_{5} \left(1 + \frac{1}{6}\right) + \text{log}_{5} \left(1 + \frac{1}{7}\right) + \ldots + \text{log}_{5} \left(1 + \frac{1}{624}\right) \] ### Step 1: Rewrite Each Term Each term in the sum can be rewritten as follows: \[ \text{log}_{5} \left(1 + \frac{1}{n}\right) = \text{log}_{5} \left(\frac{n + 1}{n}\right) = \text{log}_{5} (n + 1) - \text{log}_{5} (n) \] Thus, we can rewrite the entire expression as: \[ \sum_{n=5}^{624} \left( \text{log}_{5} (n + 1) - \text{log}_{5} (n) \right) \] ### Step 2: Recognize the Telescoping Series The above sum is a telescoping series. When we expand it, we see that most terms will cancel out: \[ \left( \text{log}_{5} (6) - \text{log}_{5} (5) \right) + \left( \text{log}_{5} (7) - \text{log}_{5} (6) \right) + \ldots + \left( \text{log}_{5} (625) - \text{log}_{5} (624) \right) \] ### Step 3: Simplify the Series After cancellation, we are left with: \[ \text{log}_{5} (625) - \text{log}_{5} (5) \] ### Step 4: Use Logarithmic Properties Using the property of logarithms that states \(\text{log}_{a}(b) - \text{log}_{a}(c) = \text{log}_{a}\left(\frac{b}{c}\right)\), we can combine the logs: \[ \text{log}_{5} \left(\frac{625}{5}\right) \] ### Step 5: Calculate the Value Now, calculate \(\frac{625}{5}\): \[ \frac{625}{5} = 125 \] Thus, we have: \[ \text{log}_{5} (125) \] ### Step 6: Final Calculation Since \(125 = 5^3\), we can simplify further: \[ \text{log}_{5} (125) = \text{log}_{5} (5^3) = 3 \] ### Final Answer The value of the original expression is: \[ \boxed{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of log_((1)/(5))625 is

int _(0) ^(1) (1 )/(2x +5) dx = log ((7)/(5))

The value of (1/(log_(5)210) + 1/(log_(6) 210) + 1/(log_(7)210)) is:

(1)/(2)log_(5)36+2log_(5)7-(1)/(2)log_(5)12

The value of ((1)/(log_(3)60)+(1)/(log_(4)60)+(1)/(log_(5)60)) is

(1)/(log_(5)5)+(1)/(log_(5)5)