Home
Class 11
MATHS
The value of "log"(sqrt(2)) sqrt(2sqrt(2...

The value of `"log"_(sqrt(2)) sqrt(2sqrt(2sqrt(2sqrt(2))))`, is

A

`(15)/(16)`

B

`(7)/(16)`

C

`(15)/(8)`

D

`(31)/(32)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \log_{\sqrt{2}} \sqrt{2\sqrt{2\sqrt{2\sqrt{2}}}} \), we will simplify the expression step by step. ### Step 1: Simplify the inner expression The expression inside the logarithm is \( \sqrt{2\sqrt{2\sqrt{2\sqrt{2}}}} \). We can denote this nested square root as \( x \): \[ x = \sqrt{2\sqrt{2\sqrt{2\sqrt{2}}}} \] ### Step 2: Break down the nested square roots We can express the nested square roots in terms of powers of 2. Notice that: \[ \sqrt{2} = 2^{1/2} \] Thus, we can rewrite the expression: \[ x = \sqrt{2 \cdot 2^{1/2} \cdot 2^{1/4} \cdot 2^{1/8}} \] ### Step 3: Combine the powers of 2 Now, we can combine the powers of 2: \[ x = \sqrt{2^{1 + 1/2 + 1/4 + 1/8}} \] Calculating the sum of the exponents: \[ 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{8}{8} + \frac{4}{8} + \frac{2}{8} + \frac{1}{8} = \frac{15}{8} \] Thus, we have: \[ x = \sqrt{2^{15/8}} = 2^{(15/8) \cdot (1/2)} = 2^{15/16} \] ### Step 4: Substitute back into the logarithm Now we substitute \( x \) back into the logarithm: \[ \log_{\sqrt{2}}(x) = \log_{\sqrt{2}}(2^{15/16}) \] ### Step 5: Apply the logarithm power rule Using the logarithm property \( \log_b(a^c) = c \cdot \log_b(a) \), we can simplify: \[ \log_{\sqrt{2}}(2^{15/16}) = \frac{15}{16} \cdot \log_{\sqrt{2}}(2) \] ### Step 6: Calculate \( \log_{\sqrt{2}}(2) \) We know that: \[ \log_{\sqrt{2}}(2) = 2 \quad \text{(because } \sqrt{2}^2 = 2\text{)} \] ### Step 7: Final calculation Now we can substitute this back into our equation: \[ \log_{\sqrt{2}}(2^{15/16}) = \frac{15}{16} \cdot 2 = \frac{30}{16} = \frac{15}{8} \] ### Conclusion Thus, the value of \( \log_{\sqrt{2}} \sqrt{2\sqrt{2\sqrt{2\sqrt{2}}}} \) is: \[ \frac{15}{8} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(2+sqrt(2+sqrt(2+sqrt(2+sqrt(2)))))=

The value of log_(sqrt(2))((9+sqrt(2+sqrt(2+sqrt(2)+...)))/(sqrt(22sqrt(22sqrt(22sqrt(22)...))))) is less than

Find the value of sqrt(2sqrt(2sqrt(2sqrt(2sqrt(2)))))

The value of log sqrt(3+2sqrt(2))+sqrt(3-2sqrt(2))2^(9) is

The value of log_(2)(sqrt(17+2sqrt(6))-sqrt(7-2sqrt(6))) is equal to

The value of (log)sqrt(4+2sqrt(2))sqrt(4-2sqrt(2))2^(9) is.

The value of log sqrt(3+2sqrt(2))+sqrt(3-2sqrt(2))(2^(9)) is

.The value of sqrt(8+2sqrt(8+2sqrt(8+2sqrt(8+2sqrt(8+...oo))))) is equal to