Home
Class 11
MATHS
If "log"(4)(3x^(2) +11x) gt 1, then x li...

If `"log"_(4)(3x^(2) +11x) gt 1`, then x lies in the interval

A

`(-4, 1//3)`

B

`(-4, 2)`

C

`[-4, 1//3]`

D

`(-oo, -4)cup (1//3, oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \log_{4}(3x^{2} + 11x) > 1 \), we will follow these steps: ### Step 1: Understand the condition for the logarithm to be defined The expression inside the logarithm must be greater than zero: \[ 3x^{2} + 11x > 0 \] ### Step 2: Factor the quadratic expression We can factor out \( x \): \[ x(3x + 11) > 0 \] ### Step 3: Find the critical points Set each factor to zero to find the critical points: 1. \( x = 0 \) 2. \( 3x + 11 = 0 \) which gives \( x = -\frac{11}{3} \) ### Step 4: Determine the intervals The critical points divide the number line into intervals: 1. \( (-\infty, -\frac{11}{3}) \) 2. \( (-\frac{11}{3}, 0) \) 3. \( (0, \infty) \) ### Step 5: Test the intervals We will test each interval to see where the product \( x(3x + 11) \) is positive. - For \( x < -\frac{11}{3} \) (e.g., \( x = -4 \)): \[ -4(3(-4) + 11) = -4(-12 + 11) = -4(-1) = 4 > 0 \quad \text{(True)} \] - For \( -\frac{11}{3} < x < 0 \) (e.g., \( x = -1 \)): \[ -1(3(-1) + 11) = -1(-3 + 11) = -1(8) = -8 < 0 \quad \text{(False)} \] - For \( x > 0 \) (e.g., \( x = 1 \)): \[ 1(3(1) + 11) = 1(3 + 11) = 1(14) = 14 > 0 \quad \text{(True)} \] ### Step 6: Combine the results From the testing, we find: - The expression \( 3x^{2} + 11x > 0 \) is true for \( x \in (-\infty, -\frac{11}{3}) \cup (0, \infty) \). ### Step 7: Solve the logarithmic inequality Now, we need to solve: \[ \log_{4}(3x^{2} + 11x) > 1 \] This can be rewritten using the property of logarithms: \[ 3x^{2} + 11x > 4^{1} \quad \Rightarrow \quad 3x^{2} + 11x > 4 \] ### Step 8: Rearrange the inequality Rearranging gives: \[ 3x^{2} + 11x - 4 > 0 \] ### Step 9: Factor the quadratic We can factor or use the quadratic formula to find the roots: Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-11 \pm \sqrt{11^{2} - 4 \cdot 3 \cdot (-4)}}{2 \cdot 3} \] Calculating the discriminant: \[ = \frac{-11 \pm \sqrt{121 + 48}}{6} = \frac{-11 \pm \sqrt{169}}{6} = \frac{-11 \pm 13}{6} \] This gives us the roots: 1. \( x = \frac{2}{6} = \frac{1}{3} \) 2. \( x = \frac{-24}{6} = -4 \) ### Step 10: Determine the intervals for the quadratic inequality The roots divide the number line into intervals: 1. \( (-\infty, -4) \) 2. \( (-4, \frac{1}{3}) \) 3. \( (\frac{1}{3}, \infty) \) ### Step 11: Test the intervals for the quadratic inequality - For \( x < -4 \) (e.g., \( x = -5 \)): \[ 3(-5)^{2} + 11(-5) - 4 = 75 - 55 - 4 = 16 > 0 \quad \text{(True)} \] - For \( -4 < x < \frac{1}{3} \) (e.g., \( x = 0 \)): \[ 3(0)^{2} + 11(0) - 4 = -4 < 0 \quad \text{(False)} \] - For \( x > \frac{1}{3} \) (e.g., \( x = 1 \)): \[ 3(1)^{2} + 11(1) - 4 = 3 + 11 - 4 = 10 > 0 \quad \text{(True)} \] ### Step 12: Combine the results The intervals where \( 3x^{2} + 11x - 4 > 0 \) are: - \( (-\infty, -4) \) - \( (\frac{1}{3}, \infty) \) ### Step 13: Find the intersection of both conditions The final intervals where both conditions are satisfied are: - From the first condition: \( (-\infty, -\frac{11}{3}) \cup (0, \infty) \) - From the second condition: \( (-\infty, -4) \cup (\frac{1}{3}, \infty) \) The intersection gives us: - \( (-\infty, -4) \) - \( (\frac{1}{3}, \infty) \) ### Final Answer Thus, the solution is: \[ x \in (-\infty, -4) \cup \left(\frac{1}{3}, \infty\right) \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Exercise|67 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If log_(3x+5)(ax^(2)+8x+2)>2 then x lies in the interval

If log_(0.5)log_(5)(x^(2)-4)>log_(0.5)1, then' x' lies in the interval

If log_(0.3) (x - 1) lt log_(0.09) (x - 1) , then x lies in the interval

If log_(0.3)(x-1)

(|x|-1)/(|x|-2)<=0 then x lies in the interval

If log_((1)/(sqrt(2)))(x-1)>2, then x lies is the interval

If log_(0.3)(x-1)ltlog_(0.09)(x-1) , then x lies in the interval

OBJECTIVE RD SHARMA-LOGARITHMS-Chapter Test
  1. If x^((3)/(2)("log"(2) x-3)) = (1)/(8), then x equals to

    Text Solution

    |

  2. If "log"(4)(3x^(2) +11x) gt 1, then x lies in the interval

    Text Solution

    |

  3. If "log"(6) (x+3)-"log"(6)x = 2, then x =

    Text Solution

    |

  4. If 2^(x).9^(2x+3) = 7^(x+5), then x =

    Text Solution

    |

  5. If "log"(7){"log"(5)(sqrt(x+5) + sqrt(x))}=0 then x =

    Text Solution

    |

  6. If "log"(6) {"log"(4)(sqrt(x+4) + sqrt(x))} =0, then x =

    Text Solution

    |

  7. If x^("log"(x)(x^(2)-4x +5)) = (x-1), then x =

    Text Solution

    |

  8. If "log"(3) {"log"(6)((x^(2) +x)/(x-1))} =0 then x =

    Text Solution

    |

  9. If "log"(8){"log"(2) "log"(3) (x^(2) -4x +85)} = (1)/(3), then x equal...

    Text Solution

    |

  10. If x = "log"(2) 3 " and " y = "log"(1//2) 5, then

    Text Solution

    |

  11. If "log"(x+2) (x^(3)-3x^(2)-6x +8) =3, then x equals to

    Text Solution

    |

  12. If (2.3)^x=(0.23)^y=1000, then find the value of 1/x-1/y.

    Text Solution

    |

  13. If 10^(x-1) + 10^(-x-1) = (1)/(3), then x equals to

    Text Solution

    |

  14. (log)2(log)2(log)3(log)3 27^3 is 0 b. 1 c. 2 d.\ 3

    Text Solution

    |

  15. If 2"log"(8) a =x, "log"(2) 2a = y " and " y-x =4, then x =

    Text Solution

    |

  16. If "log"(10) x =y, " then log"(10^(3))x^(2) equals

    Text Solution

    |

  17. If "log"(3) x xx "log"(x) 2x xx "log"(2x)y ="log"(x) x^(2), then y equ...

    Text Solution

    |

  18. The number of solutions of "log"(2) (x-1) = 2 "log"(2) (x-3) is

    Text Solution

    |

  19. If (1)/("log"(3) pi) + (1)/("log"(4) pi) gt x, then the greatest integ...

    Text Solution

    |

  20. Let x in(1,oo) and n be a positive integer greater than 1. If fn (x) =...

    Text Solution

    |