Home
Class 11
MATHS
If 10^(x-1) + 10^(-x-1) = (1)/(3), then ...

If `10^(x-1) + 10^(-x-1) = (1)/(3)`, then x equals to

A

`+-"log"_(10)3`

B

`2"log"_(3)10`

C

`"log"_(3)3`

D

`"log"_(2) 10`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(10^{(x-1)} + 10^{(-x-1)} = \frac{1}{3}\), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 10^{(x-1)} + 10^{(-x-1)} = \frac{1}{3} \] We can rewrite \(10^{(x-1)}\) as \(\frac{10^x}{10}\) and \(10^{(-x-1)}\) as \(\frac{1}{10 \cdot 10^x}\). Thus, we can factor out \(\frac{1}{10}\): \[ \frac{10^x + \frac{1}{10^x}}{10} = \frac{1}{3} \] ### Step 2: Multiply both sides by 10 To eliminate the fraction, we multiply both sides by 10: \[ 10^x + \frac{1}{10^x} = \frac{10}{3} \] ### Step 3: Let \(y = 10^x\) Now, we can let \(y = 10^x\). The equation becomes: \[ y + \frac{1}{y} = \frac{10}{3} \] ### Step 4: Multiply through by \(y\) To eliminate the fraction, we multiply through by \(y\): \[ y^2 + 1 = \frac{10}{3}y \] ### Step 5: Rearrange the equation Rearranging gives us: \[ y^2 - \frac{10}{3}y + 1 = 0 \] ### Step 6: Clear the fraction by multiplying by 3 To eliminate the fraction, multiply the entire equation by 3: \[ 3y^2 - 10y + 3 = 0 \] ### Step 7: Use the quadratic formula We can now use the quadratic formula \(y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\) where \(a = 3\), \(b = -10\), and \(c = 3\): \[ y = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 3 \cdot 3}}{2 \cdot 3} \] \[ y = \frac{10 \pm \sqrt{100 - 36}}{6} \] \[ y = \frac{10 \pm \sqrt{64}}{6} \] \[ y = \frac{10 \pm 8}{6} \] ### Step 8: Calculate the two possible values for \(y\) Calculating the two possible values: 1. \(y = \frac{18}{6} = 3\) 2. \(y = \frac{2}{6} = \frac{1}{3}\) ### Step 9: Solve for \(x\) Now we substitute back for \(y = 10^x\): 1. If \(y = 3\), then \(10^x = 3 \implies x = \log_{10}(3)\) 2. If \(y = \frac{1}{3}\), then \(10^x = \frac{1}{3} \implies x = \log_{10}\left(\frac{1}{3}\right) = -\log_{10}(3)\) ### Final Answer Thus, the values of \(x\) are: \[ x = \log_{10}(3) \quad \text{or} \quad x = -\log_{10}(3) \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Exercise|67 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)] then x equals to

tan^(-1)((2x-1)/(10))+tan^(-1 )(1/(2x))=(pi)/(4) , then x is equal to

If [(x,1)][(1,0),(-2,0)] = 0, then x equals

If x =3 ^(1//3) + 3 ^(- 1//3) , then 3x ^(3)- 10 is equal to

If (2 ^(3x -1 ) + 10) div 7 =6, then x is equal to

If 5^(3x^(2)"log"_(10)2) = 2^((x + (1)/(2))"log"_(10) 25) , then x equals to

OBJECTIVE RD SHARMA-LOGARITHMS-Chapter Test
  1. If "log"(4)(3x^(2) +11x) gt 1, then x lies in the interval

    Text Solution

    |

  2. If "log"(6) (x+3)-"log"(6)x = 2, then x =

    Text Solution

    |

  3. If 2^(x).9^(2x+3) = 7^(x+5), then x =

    Text Solution

    |

  4. If "log"(7){"log"(5)(sqrt(x+5) + sqrt(x))}=0 then x =

    Text Solution

    |

  5. If "log"(6) {"log"(4)(sqrt(x+4) + sqrt(x))} =0, then x =

    Text Solution

    |

  6. If x^("log"(x)(x^(2)-4x +5)) = (x-1), then x =

    Text Solution

    |

  7. If "log"(3) {"log"(6)((x^(2) +x)/(x-1))} =0 then x =

    Text Solution

    |

  8. If "log"(8){"log"(2) "log"(3) (x^(2) -4x +85)} = (1)/(3), then x equal...

    Text Solution

    |

  9. If x = "log"(2) 3 " and " y = "log"(1//2) 5, then

    Text Solution

    |

  10. If "log"(x+2) (x^(3)-3x^(2)-6x +8) =3, then x equals to

    Text Solution

    |

  11. If (2.3)^x=(0.23)^y=1000, then find the value of 1/x-1/y.

    Text Solution

    |

  12. If 10^(x-1) + 10^(-x-1) = (1)/(3), then x equals to

    Text Solution

    |

  13. (log)2(log)2(log)3(log)3 27^3 is 0 b. 1 c. 2 d.\ 3

    Text Solution

    |

  14. If 2"log"(8) a =x, "log"(2) 2a = y " and " y-x =4, then x =

    Text Solution

    |

  15. If "log"(10) x =y, " then log"(10^(3))x^(2) equals

    Text Solution

    |

  16. If "log"(3) x xx "log"(x) 2x xx "log"(2x)y ="log"(x) x^(2), then y equ...

    Text Solution

    |

  17. The number of solutions of "log"(2) (x-1) = 2 "log"(2) (x-3) is

    Text Solution

    |

  18. If (1)/("log"(3) pi) + (1)/("log"(4) pi) gt x, then the greatest integ...

    Text Solution

    |

  19. Let x in(1,oo) and n be a positive integer greater than 1. If fn (x) =...

    Text Solution

    |

  20. If "log"(2) "sin" x - "log"(2) "cos" x - "log"(2) (1-"tan"^(2) x) =-1,...

    Text Solution

    |