Home
Class 11
MATHS
If (1)/("log"(3) pi) + (1)/("log"(4) pi)...

If `(1)/("log"_(3) pi) + (1)/("log"_(4) pi) gt x`, then the greatest integral value of is

A

2

B

3

C

`pi`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \frac{1}{\log_3 \pi} + \frac{1}{\log_4 \pi} > x \), we can follow these steps: ### Step 1: Rewrite the logarithms Using the change of base formula, we can rewrite the logarithms: \[ \log_3 \pi = \frac{1}{\log_\pi 3} \quad \text{and} \quad \log_4 \pi = \frac{1}{\log_\pi 4} \] Thus, we have: \[ \frac{1}{\log_3 \pi} = \log_\pi 3 \quad \text{and} \quad \frac{1}{\log_4 \pi} = \log_\pi 4 \] ### Step 2: Combine the logarithms Now we can combine the two logarithms: \[ \log_\pi 3 + \log_\pi 4 = \log_\pi (3 \cdot 4) = \log_\pi 12 \] So, the inequality becomes: \[ \log_\pi 12 > x \] ### Step 3: Exponentiate to eliminate the logarithm Using the property of logarithms, we can exponentiate both sides: \[ 12 > \pi^x \] This can be rearranged to: \[ \pi^x < 12 \] ### Step 4: Take logarithm of both sides Taking the logarithm (base \( e \) or natural logarithm) of both sides gives us: \[ \log(\pi^x) < \log(12) \] This simplifies to: \[ x \cdot \log(\pi) < \log(12) \] ### Step 5: Solve for \( x \) Dividing both sides by \( \log(\pi) \) (noting that \( \log(\pi) > 0 \)): \[ x < \frac{\log(12)}{\log(\pi)} \] ### Step 6: Calculate the values Now we need to calculate \( \log(12) \) and \( \log(\pi) \): - \( \log(12) \approx 2.4849 \) - \( \log(\pi) \approx 1.1447 \) Now substituting these values: \[ x < \frac{2.4849}{1.1447} \approx 2.171 \] ### Step 7: Find the greatest integral value of \( x \) The greatest integral value of \( x \) that satisfies this inequality is: \[ \lfloor 2.171 \rfloor = 2 \] Thus, the greatest integral value of \( x \) is \( 2 \).
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Exercise|67 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

if (1)/(log_(3)pi)+(1)/(log_(4)pi)>x then x be

The value of (1)/(log_(3)pi)+(1)/(log_(4)pi)

The value of (1)/(log_(3)pi) + (1)/(log_(4)pi) is

The value of (1)/(log_(3)pi)+(1)/(log_(4)pi) is

If for x in (0, (pi)/(2) ) , log _(10) sin x + log _(10) cos x =-1 and log _(10) (sin x + cos x) = (1)/(2) ( log _(10) n-1), n gt 0, then the value of n is equal to :

Suppose 3 sin ^(-1) ( log _(2) x ) + cos^(-1) ( log _(2) y) =pi //2 " and " sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi//6 , then the value of 1/x^(-2) + 1/y^(-2) equals

The value of int_(e)^(pi^(2))[log_(pi)x]d(log_(e)x) (where [.] denotes greatest integer function) is

The value of lim_(x rarr(pi)/(4))(1+[x])^(1/ln(tan x)) (wheref..] denote the greatest integer function) is equal to

OBJECTIVE RD SHARMA-LOGARITHMS-Chapter Test
  1. If "log"(4)(3x^(2) +11x) gt 1, then x lies in the interval

    Text Solution

    |

  2. If "log"(6) (x+3)-"log"(6)x = 2, then x =

    Text Solution

    |

  3. If 2^(x).9^(2x+3) = 7^(x+5), then x =

    Text Solution

    |

  4. If "log"(7){"log"(5)(sqrt(x+5) + sqrt(x))}=0 then x =

    Text Solution

    |

  5. If "log"(6) {"log"(4)(sqrt(x+4) + sqrt(x))} =0, then x =

    Text Solution

    |

  6. If x^("log"(x)(x^(2)-4x +5)) = (x-1), then x =

    Text Solution

    |

  7. If "log"(3) {"log"(6)((x^(2) +x)/(x-1))} =0 then x =

    Text Solution

    |

  8. If "log"(8){"log"(2) "log"(3) (x^(2) -4x +85)} = (1)/(3), then x equal...

    Text Solution

    |

  9. If x = "log"(2) 3 " and " y = "log"(1//2) 5, then

    Text Solution

    |

  10. If "log"(x+2) (x^(3)-3x^(2)-6x +8) =3, then x equals to

    Text Solution

    |

  11. If (2.3)^x=(0.23)^y=1000, then find the value of 1/x-1/y.

    Text Solution

    |

  12. If 10^(x-1) + 10^(-x-1) = (1)/(3), then x equals to

    Text Solution

    |

  13. (log)2(log)2(log)3(log)3 27^3 is 0 b. 1 c. 2 d.\ 3

    Text Solution

    |

  14. If 2"log"(8) a =x, "log"(2) 2a = y " and " y-x =4, then x =

    Text Solution

    |

  15. If "log"(10) x =y, " then log"(10^(3))x^(2) equals

    Text Solution

    |

  16. If "log"(3) x xx "log"(x) 2x xx "log"(2x)y ="log"(x) x^(2), then y equ...

    Text Solution

    |

  17. The number of solutions of "log"(2) (x-1) = 2 "log"(2) (x-3) is

    Text Solution

    |

  18. If (1)/("log"(3) pi) + (1)/("log"(4) pi) gt x, then the greatest integ...

    Text Solution

    |

  19. Let x in(1,oo) and n be a positive integer greater than 1. If fn (x) =...

    Text Solution

    |

  20. If "log"(2) "sin" x - "log"(2) "cos" x - "log"(2) (1-"tan"^(2) x) =-1,...

    Text Solution

    |