Home
Class 11
MATHS
Statement -1 : The probability of gettin...

Statement -1 : The probability of getting a tail most of the times in 10 tosses of a unbiased coin is `(1)/(2){1-(10ǃ)/(2^10 5ǃ5ǃ)}`.
Statement -2: `.^2nC_(0)+.^2nC_(1)+.^2nC_(2)+.....^2nC_(n)=2^2n-1,n in N`.

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
C

Let p be the probability of getting a tial in a sigle trial. Then, `p(1)/(2)=q`. Let X denote the number of tails in 10 trials. Then,
`-P(X=r)=.^10C_(r)((1)/(2))^10`
`therefore` Probability of getting a tail most of the times `=P(Xge 6)=sum_(r=6)^(10)P(X=r)=(1)/(2)^10{.^C_(6)+.^C_(7)+.^10C_(8)+.^10C_(9)+.^10C_(10)}`
`=((1)/(2))^11{.^10C_(0)+.^10C_(1)+.... .^10C_(10)-.^10C_(5)}`
`=((1)/(2))^11{2^10-(10ǃ)/(5ǃ 5ǃ)}=(1)/(2){1-(10ǃ)/(2^10 5ǃ5ǃ)}`
So, statement -1 is true.
We have,
`.^2nC_(0)+.^2nC_(1)+.^2nC_(2)+.....+.^2nC_(n)+.^2nC_(n+1)+.......+.^2nC_(2n)=2^2n`
`rArr 2(.^C_0+.^2nC_1+.^2nC_2+..... .^2nC_(2)+....+.^2nC_(n-1))+.^2nC_(n)=2^2n`
`rArr .^2nC_0+.^2n_C_1+.^2nC_(2)+......^2nC_n-1=2^2n-1-(1)/(2)2n_(C_n)`
So, Statement -2 is not true.
Promotional Banner

Similar Questions

Explore conceptually related problems

Median of 2nC_(0),2nC_(1),2nC_(2),....,2nC_(n) (when n is even) is

(nC_(0))^(2)+(nC_(1))^(2)+(nC_(2))^(2)+......+(nC_(n))^(2)

the A.M. of nC_(0),nC_(1),nC_(2),.........,nC_(n) is

The expression nC_(0)+4*nC_(1)+4^(2)nC_(2)+.....4^(n^(n))C_(n), equals

(nC_(0))^(2)-(nC_(1))^(2)+(nC_(2))^(2)+....+(-1)^(n)(nC_(n))^(2)

Prove that "^nC_r + 2. ^nC_(r-1) + ^nC_(r-2) = ^(n+2)C_r

If n=5 , then (^nC_(0))^(2)+(^nC_(1))^(2)+(^nC_(2))^(2)+....+(^nC_(5))^(2) is equal to

If n is a positive integer,then nC_(1)+nC_(2)+...+nC_(n)=2^(n)-1

The value of 4(nC_(1)+4.nC_(2)+4^(2)*nC_(3)+......+4^(n-1)} is

Prove that ""^nC_0+2*""^nC_1+3*""^nC_2+...+(n+1)""^nC_n=(n+2)2^(n-1)