Home
Class 12
MATHS
If A=((0,0),(1,1)) then the value of A+...

If `A=((0,0),(1,1))` then the value of `A+A^2+A3...A^n=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=((0,0),(1,1)) then the value of A+A^(2)+A^(3)+ . . . .A^(n)=

An equivalence relation R in A divides it into equivalence classes A1,A2, A3.What is the value of A1uu A2uu A3 and A1nn A2nn A3 ?

If roots of an equation x^n-1=0 are 1,a_1,a_2,........,a_(n-1) then the value of (1-a_1)(1-a_2)(1-a_3)........(1-a_(n-1)) will be (a) n (b) n^2 (c) n^n (d) 0

If (1+x)^10 = a0 + a1 x + a2 x^2 + a3 x^3 + a4 x^4 + a5 x^5 + a6 x^6 +.... a10 x^10), then the value of ( a0 - a2 + a4 - a6 + a8 -a10)^2 + (a1 - a3 + a5 -a7 + a9)^2 is :

If P(A_1) = 0.2 , P(A_2) = 0.1 and P(A_3) = 0.3 and these events are mutually independent, then what is the value of P(A_1 nn A_2 nn A_3) ?

If a_1+a_2+a_3+...+a_n=1AAa_i>0,i=1,2,3, ,n , then find the maximum value of a_1 a_2a_3a_4a_5.... a_n.

If a_(n+1)=1/(1-a_n) for n>=1 and a_3=a_1 . then find the value of (a_2001)^2001 .

If a_(n+1)=1/(1-a_n) for n>=1 and a_3=a_1 . then find the value of (a_2001)^2001 .

If a_(n+1)=1/(1-a_n) for n>=1 and a_3=a_1 . then find the value of (a_2001)^2001 .