Home
Class 12
MATHS
If f (x) = {{:((1- sqrt2sin x )/(pi...

If ` f (x) = {{:((1- sqrt2sin x )/(pi - 4 x )",",, x ne (pi)/(4)),(a" "",",,x = (pi)/(4)):}`
is continuous at ` x = (pi)/(4)`, then a =

A

4

B

2

C

1

D

`1//4`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( a \) that makes the function \( f(x) \) continuous at \( x = \frac{\pi}{4} \), we need to ensure that the limit of \( f(x) \) as \( x \) approaches \( \frac{\pi}{4} \) is equal to \( f\left(\frac{\pi}{4}\right) \). ### Step 1: Define the function The function is defined as: \[ f(x) = \begin{cases} \frac{1 - \sqrt{2} \sin x}{\pi - 4x} & \text{if } x \neq \frac{\pi}{4} \\ a & \text{if } x = \frac{\pi}{4} \end{cases} \] ### Step 2: Find the limit as \( x \) approaches \( \frac{\pi}{4} \) We need to calculate: \[ \lim_{x \to \frac{\pi}{4}} f(x) = \lim_{x \to \frac{\pi}{4}} \frac{1 - \sqrt{2} \sin x}{\pi - 4x} \] ### Step 3: Substitute \( x = \frac{\pi}{4} \) into the limit First, we calculate \( \sin\left(\frac{\pi}{4}\right) \): \[ \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \] Now substitute \( x = \frac{\pi}{4} \): \[ \lim_{x \to \frac{\pi}{4}} f(x) = \frac{1 - \sqrt{2} \cdot \frac{\sqrt{2}}{2}}{\pi - 4 \cdot \frac{\pi}{4}} = \frac{1 - 1}{\pi - \pi} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's rule. ### Step 4: Apply L'Hôpital's Rule Differentiate the numerator and denominator: - The derivative of the numerator \( 1 - \sqrt{2} \sin x \) is \( -\sqrt{2} \cos x \). - The derivative of the denominator \( \pi - 4x \) is \( -4 \). Now we can rewrite the limit: \[ \lim_{x \to \frac{\pi}{4}} \frac{-\sqrt{2} \cos x}{-4} = \frac{\sqrt{2}}{4} \cos\left(\frac{\pi}{4}\right) \] Substituting \( \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \): \[ \lim_{x \to \frac{\pi}{4}} f(x) = \frac{\sqrt{2}}{4} \cdot \frac{\sqrt{2}}{2} = \frac{2}{8} = \frac{1}{4} \] ### Step 5: Set the limit equal to \( a \) For \( f(x) \) to be continuous at \( x = \frac{\pi}{4} \), we need: \[ a = \lim_{x \to \frac{\pi}{4}} f(x) = \frac{1}{4} \] ### Conclusion Thus, the value of \( a \) that makes the function continuous at \( x = \frac{\pi}{4} \) is: \[ \boxed{\frac{1}{4}} \]

To determine the value of \( a \) that makes the function \( f(x) \) continuous at \( x = \frac{\pi}{4} \), we need to ensure that the limit of \( f(x) \) as \( x \) approaches \( \frac{\pi}{4} \) is equal to \( f\left(\frac{\pi}{4}\right) \). ### Step 1: Define the function The function is defined as: \[ f(x) = \begin{cases} \frac{1 - \sqrt{2} \sin x}{\pi - 4x} & \text{if } x \neq \frac{\pi}{4} \\ ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:((1-sqrt2sinx)/(pi-4x)",",ifxne(pi)/(4)),(a",",if x=(pi)/(4)):} in continuous at (pi)/(4) , then a is equal to :

Let f (x)= {{:((1- tan x)/(4x-pi), x ne (pi)/(4)),( lamda, x =(pi)/(4)):}, x in [0, (pi)/(2)), If f (x) is continuous in [0, (pi)/(2)) then lamda is equal to:

If : f(x) {: ((1-sin x)/(pi-2x)", ... " x != pi//2 ),(=lambda ", ... " x = pi//2):} is continuous at x = pi//2 , then : lambda =

If f(x)={(x+a sqrt(2) sinx"," ,0 lt x lt (pi)/(4)),(2x cotx+b",",(pi)/(4) le x le (pi)/(2)),(a cos 2x-b sinx",", (pi)/(2) lt x le pi):} is continuous at x=(pi)/(4) , then a - b is equal to

Let f(x)= {{:(,(tanx-cotx)/(x-(pi)/(4)),x ne (pi)/(4)),(,a,x=(pi)/(4)):} The value of a so that f(x) is a continous at x=pi//4 is.

OBJECTIVE RD SHARMA-CONTINUITY AND DIFFERENTIABILITY-Exercise
  1. If f (x) = {{:((1- sqrt2sin x )/(pi - 4 x )",",, x ne (pi)/(4)),(...

    Text Solution

    |

  2. The function f(x) = (4-x^(2))/(4x-x^(3)) is

    Text Solution

    |

  3. Let f(x)=|x| and g(x)=|x^3| , then f(x) and g(x) both are continuous a...

    Text Solution

    |

  4. The function f(x)=sin^(-1)(cosx) is discontinuous at x=0 (b) continuou...

    Text Solution

    |

  5. The set of points where the function f9x)=x|x| is differentiable is (-...

    Text Solution

    |

  6. On the interval I=[-2,2], the function f(x)={{:(,(x+1)e^(-((1)/(|x|)+(...

    Text Solution

    |

  7. If f(x)={{:(,(|x+2|)/(tan^(-1)(x+2)),x ne -2),(,2, x=-2):}, then f(x) ...

    Text Solution

    |

  8. Let f(x)=(x+|x|)|x| . Then, for all x f is continuous (b) f is differ...

    Text Solution

    |

  9. The set of all points where the function f(x)=sqrt(1-e^(-x^2)) is di...

    Text Solution

    |

  10. The function f(x) = e^(|x|) is

    Text Solution

    |

  11. The function f(x)=[cos x] is

    Text Solution

    |

  12. If f(x)=sqrt(1-sqrt(1-x^2)) , then f(x) is continuous on [-1, 1] an...

    Text Solution

    |

  13. If f(x)=sin^(-1) ((2x)/(1+x^2)) then f(x) is differentiable on

    Text Solution

    |

  14. If f(x)=a|sinx|+be^|x|+c|x|^3 and if f(x) is differentiable at x=0 the...

    Text Solution

    |

  15. If f(x)=|x-a|varphi(x), where varphi(x) is continuous function, then f...

    Text Solution

    |

  16. If f(x)=x^2+(x^2)/(1+x^2)+(x^2)/((1+x^2)^2)++(x^2)/((1+x^2)^n)+ , then...

    Text Solution

    |

  17. If f(x)= | log10x| then at x=1.

    Text Solution

    |

  18. If f(x)=|log(e) x|,then

    Text Solution

    |

  19. If f(x)=|log(e) |x||,"then "

    Text Solution

    |

  20. Let f(x)={{:(,(1)/(|x|),"for "|x| gt1),(,ax^(2)+b,"for "|x| lt 1):} If...

    Text Solution

    |

  21. Let h(x) = min {x, x^2}, for every real number of X. Then (A) h is con...

    Text Solution

    |