Home
Class 12
MATHS
If f(x)={{:(,ax^(2)-b,|x|lt 1),(,(1)/(|x...

If `f(x)={{:(,ax^(2)-b,|x|lt 1),(,(1)/(|x|),|x| ge1):}` is differentiable at x=1, then

A

`a=(1)/(2),b=-(1)/(2)`

B

`a=-(1)/(2),b=-(3)/(2)`

C

`a=b=(1)/(2)`

D

`a=b=-(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( a \) and \( b \) such that the function \[ f(x) = \begin{cases} ax^2 - b & \text{if } |x| < 1 \\ \frac{1}{|x|} & \text{if } |x| \geq 1 \end{cases} \] is differentiable at \( x = 1 \), we need to ensure that the function is both continuous and differentiable at that point. ### Step 1: Check Continuity at \( x = 1 \) For \( f(x) \) to be continuous at \( x = 1 \), the left-hand limit as \( x \) approaches 1 must equal the right-hand limit at \( x = 1 \) and also equal \( f(1) \). 1. **Calculate \( f(1) \)**: \[ f(1) = \frac{1}{|1|} = 1 \] 2. **Calculate the left-hand limit as \( x \) approaches 1**: \[ \lim_{x \to 1^-} f(x) = a(1)^2 - b = a - b \] 3. **Calculate the right-hand limit as \( x \) approaches 1**: \[ \lim_{x \to 1^+} f(x) = \frac{1}{1} = 1 \] Setting the left-hand limit equal to the right-hand limit gives: \[ a - b = 1 \quad \text{(Equation 1)} \] ### Step 2: Check Differentiability at \( x = 1 \) For \( f(x) \) to be differentiable at \( x = 1 \), the left-hand derivative must equal the right-hand derivative at that point. 1. **Calculate the left-hand derivative**: \[ f'(x) = \frac{d}{dx}(ax^2 - b) = 2ax \quad \text{for } |x| < 1 \] Thus, \[ f'(1) = 2a(1) = 2a \] 2. **Calculate the right-hand derivative**: \[ f'(x) = \frac{d}{dx}\left(\frac{1}{|x|}\right) = -\frac{1}{x^2} \quad \text{for } |x| \geq 1 \] Thus, \[ f'(1) = -\frac{1}{1^2} = -1 \] Setting the left-hand derivative equal to the right-hand derivative gives: \[ 2a = -1 \quad \text{(Equation 2)} \] ### Step 3: Solve the Equations From Equation 2: \[ a = -\frac{1}{2} \] Substituting \( a \) into Equation 1: \[ -\frac{1}{2} - b = 1 \] \[ -b = 1 + \frac{1}{2} = \frac{3}{2} \] \[ b = -\frac{3}{2} \] ### Final Result The values of \( a \) and \( b \) that make \( f(x) \) differentiable at \( x = 1 \) are: \[ a = -\frac{1}{2}, \quad b = -\frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {{:(2x^(2) + 3x +4, x lt 1),(kx+9-k, x ge 1):} is differentiable at x=1, then k is equal to

If f(x)={{:(a+tan^(-1)(x-b),,,x ge1),((x)/(2),,,xlt1):} is differentiable at x = 1, then 4a-b can be

If the function f(x)={{:(,-x,x lt 1),(,a+cos^(-1)(x+b),1 le xle 2):} is differentiable at x=1, then (a)/(b) is equal to

Let a and b be real numbers such that the function g(x)={{:(,-3ax^(2)-2,x lt 1),(,bx+a^(2),x ge1):} is differentiable for all x in R Then the possible value(s) of a is (are)

If f(x)={{:(,e^(x),x lt 2),(,ax+b,x ge 2):} is differentiable for all x in R , them

Find 'a' and 'b', if the function given by: f(x)={{:(ax^(2)+b", if "xlt1),(2x+1", if "xge1):} is differentiable at x = 1.

If the function f(x) is given by f(x)={{:(,2^(1//(x-1)),x lt 1),(,ax^(2)+bx,x ge 1):} is everywhere differentiable, then

If f(x)={{:(,(x)/(1+|x|),|x|ge 1),(,(x)/(1-|x|),|x| lt 1):} then f(x) is

OBJECTIVE RD SHARMA-CONTINUITY AND DIFFERENTIABILITY-Exercise
  1. Let f(x) be defined on R such that f(1)=2,f(2)=8 and f(u+v)=f(u)+kuv-2...

    Text Solution

    |

  2. Let f(x) be a function satisfying f(x+y)=f(x)+f(y) and f(x)=x g(x)"For...

    Text Solution

    |

  3. If f(x)={{:(,ax^(2)-b,|x|lt 1),(,(1)/(|x|),|x| ge1):} is differentiabl...

    Text Solution

    |

  4. If f(x)=(x-x(0)) phi (x) and phi(x) is continuous at x=x(0). Then f'(...

    Text Solution

    |

  5. If f(x+y)=f(x) xx f(y) for all x,y in R and f(5)=2, f'(0)=3, then f'(...

    Text Solution

    |

  6. Let f:RtoR be a function given by f(x+y)=f(x)f(y) for all x,y in R .If...

    Text Solution

    |

  7. Let f (x + y) = f(x) f(y) for all x, y, in R, suppose that f(3) = 3...

    Text Solution

    |

  8. Let f(x+y)=f(x)+f(y) and f(x)=x^2g(x)AA x,y in R where g(x) is continu...

    Text Solution

    |

  9. Let f(x) be a function satisfying f(x+y)=f(x)f(y) for all x,y in R and...

    Text Solution

    |

  10. Let f(x+y)=f(x) f(y) and f(x)=1+(sin 2x)g(x) where g(x) is continuous....

    Text Solution

    |

  11. Let f(x+y)=f(x) f(y) and f(x)=1+(sin 2x)g(x) where g(x) is continuous....

    Text Solution

    |

  12. Let g(x) be the inverse of an invertible function f(x) which is differ...

    Text Solution

    |

  13. Let g(x) be the inverse of the function f(x), and f'(x)=1/(1+x^3) then...

    Text Solution

    |

  14. Let f(x)={{:(,x^(n)"sin "(1)/(x),x ne 0),(,0,x=0):} Then f(x) is conti...

    Text Solution

    |

  15. If for a continuous function f,f(0)=f(1)=0,f^(prime)(1)=2a n dy(x)=f(e...

    Text Solution

    |

  16. Let f(x) be a function such that f(x+y)=f(x)+f(y) and f(x)=sin x g(x)...

    Text Solution

    |

  17. Let f(0,pi) to R be defined as f(x)={{:(,(1-sinx)/((pi-2x)^(2)).(In si...

    Text Solution

    |

  18. If f(x)=(e^(2x) - (1+4x)^(1//2))/(ln(1-x^2)) for x != 0, then f has

    Text Solution

    |

  19. Let f(x)={{:(,(e^(x^2)-(2)/(pi)sin^(-1)sqrt(1-x))/(In(1+sqrtx)),x in (...

    Text Solution

    |

  20. Let f(x)={{:(,x^(3),x lt 1),(,ax^(2)+bx+c,:x ge 1):}. If f''(1) exists...

    Text Solution

    |