Home
Class 12
MATHS
Let f(x) be a function satisfying f(x+y)...

Let f(x) be a function satisfying `f(x+y)=f(x)f(y)` for all `x,y in R` and f(x)=1+xg(x) where `lim_(x to 0) g(x)=1`. Then f'(x) is equal to

A

g'(x)

B

g(x)

C

f(x)

D

None of these

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos

Similar Questions

Explore conceptually related problems

Let f(x+y)=f(x).f(y) for all x, y in R and f(x)=1+x phi(x)log3. If lim_(xrarr0)phi(x)=1, then f'(x) is equal to

Let f:R to R be a function given by f(x+y)=f(x) f(y)"for all "x,y in R "If "f(x)=1+xg(x),log_(e)2, "where "lim_(x to 0) g(x)=1. "Then, f'(x)=

Let f be a function satisfying f(x+y)=f(x)+f(y) for all x,y in R. If f(1)=k then f(n),n in N is equal to

Let f be a differentiable function satisfying f(xy)=f(x).f(y).AA x gt 0, y gt 0 and f(1+x)=1+x{1+g(x)} , where lim_(x to 0)g(x)=0 then int (f(x))/(f'(x))dx is equal to

Let f be a real valued function satisfying f(x+y)=f(x)+f(y) for all x, y in R and f(1)=2 . Then sum_(k=1)^(n)f(k)=

Let be a real function satisfying f(x)+f(y)=f((x+y)/(1-xy)) for all x ,y in R and xy ne1 . Then f(x) is

OBJECTIVE RD SHARMA-CONTINUITY AND DIFFERENTIABILITY-Exercise
  1. Let f(x) be defined on R such that f(1)=2,f(2)=8 and f(u+v)=f(u)+kuv-2...

    Text Solution

    |

  2. Let f(x) be a function satisfying f(x+y)=f(x)+f(y) and f(x)=x g(x)"For...

    Text Solution

    |

  3. If f(x)={{:(,ax^(2)-b,|x|lt 1),(,(1)/(|x|),|x| ge1):} is differentiabl...

    Text Solution

    |

  4. If f(x)=(x-x(0)) phi (x) and phi(x) is continuous at x=x(0). Then f'(...

    Text Solution

    |

  5. If f(x+y)=f(x) xx f(y) for all x,y in R and f(5)=2, f'(0)=3, then f'(...

    Text Solution

    |

  6. Let f:RtoR be a function given by f(x+y)=f(x)f(y) for all x,y in R .If...

    Text Solution

    |

  7. Let f (x + y) = f(x) f(y) for all x, y, in R, suppose that f(3) = 3...

    Text Solution

    |

  8. Let f(x+y)=f(x)+f(y) and f(x)=x^2g(x)AA x,y in R where g(x) is continu...

    Text Solution

    |

  9. Let f(x) be a function satisfying f(x+y)=f(x)f(y) for all x,y in R and...

    Text Solution

    |

  10. Let f(x+y)=f(x) f(y) and f(x)=1+(sin 2x)g(x) where g(x) is continuous....

    Text Solution

    |

  11. Let f(x+y)=f(x) f(y) and f(x)=1+(sin 2x)g(x) where g(x) is continuous....

    Text Solution

    |

  12. Let g(x) be the inverse of an invertible function f(x) which is differ...

    Text Solution

    |

  13. Let g(x) be the inverse of the function f(x), and f'(x)=1/(1+x^3) then...

    Text Solution

    |

  14. Let f(x)={{:(,x^(n)"sin "(1)/(x),x ne 0),(,0,x=0):} Then f(x) is conti...

    Text Solution

    |

  15. If for a continuous function f,f(0)=f(1)=0,f^(prime)(1)=2a n dy(x)=f(e...

    Text Solution

    |

  16. Let f(x) be a function such that f(x+y)=f(x)+f(y) and f(x)=sin x g(x)...

    Text Solution

    |

  17. Let f(0,pi) to R be defined as f(x)={{:(,(1-sinx)/((pi-2x)^(2)).(In si...

    Text Solution

    |

  18. If f(x)=(e^(2x) - (1+4x)^(1//2))/(ln(1-x^2)) for x != 0, then f has

    Text Solution

    |

  19. Let f(x)={{:(,(e^(x^2)-(2)/(pi)sin^(-1)sqrt(1-x))/(In(1+sqrtx)),x in (...

    Text Solution

    |

  20. Let f(x)={{:(,x^(3),x lt 1),(,ax^(2)+bx+c,:x ge 1):}. If f''(1) exists...

    Text Solution

    |