Home
Class 12
MATHS
lim(xrarroo) (sqrt(x^2+2x-1)-x)=...

`lim_(xrarroo) (sqrt(x^2+2x-1)-x)=`

A

`oo`

B

`1//2`

C

`4`

D

`1`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that lim_(x rarr oo)(sqrt(x^(2)+x+1)-x)!=lim_(x rarr oo)(sqrt(x^(2)+1)-x)

(i) lim_(xrarroo) "(sqrt(x^(2)+x+1)-sqrt(x^(2)+1)) (ii) lim_(nrarroo) (n)/(2)r^(2)sin(2pi)/(n)

lim_(xrarroo)(sqrt(x^(2)+sin^(2)x))/(x+cosx)

lim_(xrarroo)(sqrt(x+sqrtx)-sqrtx) is

The value of lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)-x+1) equal to

The value of lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)-x+1)) equals

lim_(x rarr oo)(sqrt(x^2+x+1)/sqrt(x^2+x+2))

lim_(xrarrinfty)(sqrt(x^2-2x-1)-sqrt(x^2-7x+3)) is equal to

lim_(xrarr oo)(sqrt(3x^2-1)+sqrt(2x^2-1))/(4x+3)=

lim_(x rarr oo)(sqrt(x^(2)+x+1))-(sqrt(x^(2)+1))