Home
Class 12
MATHS
intcos^(3)xe^(log(sinx))dx is equal to...

`intcos^(3)xe^(log(sinx))dx` is equal to

A

`-(sin^(4)x)/(4)+C`

B

`-(cos^(4)x)/(4)+C`

C

`(e^(sinx))/(4)+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

int cos^(3)x.e^(log(sin x)) dx is equal to

int(cos^(3)x)e^(log(sinx))dx=

intcos^3x*e^(logsinx)dx

The value of int(xe^(ln(sin x))-cos x)dx is equal to

xe^(sqrt(sinx))

intx^(3)log x dx is equal to

int(cotx)/(log(sinx))dx

intcos^3(2x+3)dx

int(sinx)/(sinx-a)dx is equal to