Home
Class 12
MATHS
int 5^(5^(5^x)) * 5^(5^x) * 5^x\ dx is e...

`int 5^(5^(5^x)) * 5^(5^x) * 5^x\ dx` is equal to

A

`(5^(5^(x)))/((log5)^(3))+C`

B

`5^(5^(5^(x)))(log5)^(3)+C`

C

`(5^(5^(5^(x))))/((log5)^(3))+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

int5^(5^(5^(x)))*5^(5^(x))*5^(x)*dx

int5^(5^(5^(x)))*5^(5^(x))*5^(x)dx

The value of int5^(5^(5^(x))). 5^(5^(x)). 5^(x) Is equal to

int(5^(x))^(4)dx is equal to

int5^(5^(x^(2)))*5^(5^(x))*5^(x)backslash dx is equal to

Evaluate the following integrals: int5^(5^(5^(x)))*5^(5^(x))*5^(x)dx

int (dx)/5^(-x)

int5^(5^(5^(x)))*5^(5^(x))*5^(x)backslash dx