Home
Class 12
MATHS
If int(1)/(1+sinx)dx=tan((x)/(2)+a)+b th...

If `int(1)/(1+sinx)dx=tan((x)/(2)+a)+b` then

A

`a=-(pi)/(4),binR`

B

`a=(pi)/(4),binR`

C

`a=(5pi)/(4),b inR`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{1 + \sin x} \, dx \), we can use a trigonometric identity and substitution. Let's go through the solution step by step. ### Step 1: Use the Trigonometric Identity We know that: \[ \sin x = 2 \tan\left(\frac{x}{2}\right) \cdot \frac{1}{1 + \tan^2\left(\frac{x}{2}\right)} \] This means: \[ 1 + \sin x = 1 + 2 \tan\left(\frac{x}{2}\right) \cdot \frac{1}{1 + \tan^2\left(\frac{x}{2}\right)} = \frac{(1 + \tan^2\left(\frac{x}{2}\right)) + 2 \tan\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} \] Thus: \[ 1 + \sin x = \frac{(1 + \tan\left(\frac{x}{2}\right))^2}{1 + \tan^2\left(\frac{x}{2}\right)} \] ### Step 2: Substitute Let: \[ t = \tan\left(\frac{x}{2}\right) \] Then: \[ dx = \frac{2}{1 + t^2} \, dt \] Now substituting \( t \) into the integral: \[ \int \frac{1}{1 + \sin x} \, dx = \int \frac{1 + t^2}{(1 + t)^2} \cdot \frac{2}{1 + t^2} \, dt = 2 \int \frac{1}{(1 + t)^2} \, dt \] ### Step 3: Integrate Now we can integrate: \[ 2 \int \frac{1}{(1 + t)^2} \, dt = 2 \left( -\frac{1}{1 + t} \right) + C = -\frac{2}{1 + t} + C \] ### Step 4: Substitute Back Now substituting back \( t = \tan\left(\frac{x}{2}\right) \): \[ -\frac{2}{1 + \tan\left(\frac{x}{2}\right)} + C \] ### Step 5: Final Form Using the identity \( 1 + \tan\left(\frac{x}{2}\right) = \frac{1 + \sin x}{\cos x} \): \[ -\frac{2 \cos\left(\frac{x}{2}\right)}{1 + \sin x} + C \] Thus, we can express the integral as: \[ \int \frac{1}{1 + \sin x} \, dx = -2 \tan\left(\frac{x}{2}\right) + C \] ### Conclusion Comparing with the given form \( \tan\left(\frac{x}{2} + a\right) + b \), we can identify that: - \( a = 0 \) - \( b = -2 \)
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

int(sinx)/((1+sinx))dx=?

int(sinx)/((1+sinx))dx=?

int(sinx)/(1-sin^(2)x)dx=

int(1)/(sinx*cos^(2)x)dx=

int(1)/(1+tan ^(2)x)dx