Home
Class 12
MATHS
int(cos2x)/((sinx+cosx)^(2))dx is equal ...

`int(cos2x)/((sinx+cosx)^(2))dx` is equal to

A

`(-1)/(sinx+cos)+C`

B

`log(sinx+cosx)+C`

C

`log(sinx-cosx)+C`

D

`log(sinx+cosx)^(2)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\cos(2x)}{(\sin x + \cos x)^2} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand Using the identity for \( \cos(2x) \): \[ \cos(2x) = \cos^2(x) - \sin^2(x) \] we can express the integral as: \[ \int \frac{\cos^2(x) - \sin^2(x)}{(\sin x + \cos x)^2} \, dx \] ### Step 2: Factor the numerator The expression \( \cos^2(x) - \sin^2(x) \) can be factored as: \[ \cos^2(x) - \sin^2(x) = (\cos x + \sin x)(\cos x - \sin x) \] Thus, we can rewrite the integral: \[ \int \frac{(\cos x + \sin x)(\cos x - \sin x)}{(\sin x + \cos x)^2} \, dx \] ### Step 3: Simplify the integrand Notice that \( \frac{(\cos x + \sin x)}{(\sin x + \cos x)^2} \) simplifies to: \[ \frac{\cos x - \sin x}{\sin x + \cos x} \] This gives us: \[ \int \frac{\cos x - \sin x}{\sin x + \cos x} \, dx \] ### Step 4: Use substitution Let: \[ t = \sin x + \cos x \] Then, differentiate \( t \) with respect to \( x \): \[ dt = (\cos x - \sin x) \, dx \] This allows us to rewrite the integral as: \[ \int \frac{dt}{t} \] ### Step 5: Integrate The integral \( \int \frac{dt}{t} \) is: \[ \ln |t| + C \] Substituting back for \( t \): \[ \ln |\sin x + \cos x| + C \] ### Final Answer Thus, the solution to the integral is: \[ \int \frac{\cos(2x)}{(\sin x + \cos x)^2} \, dx = \ln |\sin x + \cos x| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

Choose the correct answers int(cos2x)/((sinx+cosx)^2)dx is equal (A) (-1)/(sinx+cosx)+C (B) log|sinx+cosx|+C C) log|sinx-cosx|+C (D) 1/((sinx+cosx)^2)

int(cos2x)/(sinx+cosx)dx=

int(x^(2))/((x sinx+cosx)^(2))dx is equal to

int(cosx-sinx)/(1+2sin x cosx)dx is equal to

int(sinx-cosx)^(4)(sinx+cosx)dx is equal to

int(cosx-sinx)/(( sin x+ cos x)^(2))dx

int(sinx-cosx)^(2)dx=