Home
Class 12
MATHS
If intf(x)sinxcosxdx=(1)/(2(b^(2)-a^(2))...

If `intf(x)sinxcosxdx=(1)/(2(b^(2)-a^(2)))log{f(x)}+C` then f(x) is equal to

A

`(1)/(a^(2)sin^(2)x+b^(2)cos^(2)x)`

B

`(1)/(a^(2)sin^(2)x-b^(2)cos^(2)x)`

C

`(1)/(a^(2)cos^(2)x+b^(2)sin^(2)x)`

D

`(1)/(a^(2)cos^(2)x-b^(2)sin^(2)x)`

Text Solution

Verified by Experts

The correct Answer is:
a
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

If intf (x)sinx cosx dx=(1)/(2(a^(2)-b^(2)))log|f(x)|+C ,then f (x)=

If f(x)sin x cos xdx=(1)/(2(b^(2)-a^(2)))ln f(x)+c, then f(x) is equal to (1)/(a^(2)sin^(2)x+b^(2)cos^(2)x)(b)(1)/(a^(2)sin^(2)x-b^(2)cos^(2)x+b^(2)cos^(2)x+b^(2)cos^(2)x)(d)(1)/(a^(2)cos^(2)x-b^(2)cos^(2)x)

int_( then )^( If )f(x)sin x cos xdx=(1)/(2(b^(2)-a^(2)))log f(x)+C

If intf(x)cosx dx=(1)/(2)=(1)/(2)[f(x)]^(2)+c, then f(x) can be

If f(x)=log|2x|,x!=0 then f'(x) is equal to

If f(x)=log|2x|,xne0 then f'(x) is equal to

If int(dx)/(f(x))=log{f(x)}^(2)+c , then what is f(x) equal to ?