Home
Class 12
MATHS
The value of int((x-x^(3))^(1//3))/(x^(...

The value of `int((x-x^(3))^(1//3))/(x^(4))dx` is

A

`(3)/(8)((1)/(x^(2))-1)^(4//3)+C`

B

`-(3)/(8)((1)/(x^(2))-1)^(4//3)+C`

C

`(1)/(8)(1-(1)/(x^(2)))^(4//3)+1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{(x - x^3)^{1/3}}{x^4} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start by factoring out \( x^3 \) from the expression inside the integral: \[ x - x^3 = x(1 - x^2) \] Thus, we can rewrite the integral as: \[ \int \frac{(x(1 - x^2))^{1/3}}{x^4} \, dx \] ### Step 2: Rewrite the integral Now, we can express this as: \[ \int \frac{x^{1/3}(1 - x^2)^{1/3}}{x^4} \, dx = \int \frac{(1 - x^2)^{1/3}}{x^{11/3}} \, dx \] ### Step 3: Substitute Next, we will use the substitution \( t = \frac{1}{x^2} \). Then, we have: \[ dx = -\frac{1}{2} x^{-3} dt \] Substituting \( x = \frac{1}{\sqrt{t}} \) gives us: \[ dx = -\frac{1}{2} \left(\frac{1}{\sqrt{t}}\right)^{-3} dt = -\frac{1}{2} t^{3/2} dt \] ### Step 4: Change the variable in the integral Now substituting \( x \) and \( dx \) into the integral: \[ \int \frac{(1 - \frac{1}{t})^{1/3}}{(\frac{1}{\sqrt{t}})^{11/3}} \left(-\frac{1}{2} t^{3/2}\right) dt \] This simplifies to: \[ -\frac{1}{2} \int (1 - \frac{1}{t})^{1/3} t^{11/3} t^{3/2} dt \] ### Step 5: Simplify further Now we can rewrite the integral: \[ -\frac{1}{2} \int (1 - \frac{1}{t})^{1/3} t^{11/3 + 3/2} dt \] ### Step 6: Integrate Now we can integrate the expression. The integral can be computed using standard integration techniques, such as integration by parts or substitution. ### Step 7: Back substitute After integrating, we will substitute back \( t = \frac{1}{x^2} \) to express the answer in terms of \( x \). ### Final Answer The final answer will be in the form of: \[ -\frac{3}{8} \left(\frac{1}{x^2} - 1\right)^{4/3} + C \] where \( C \) is the constant of integration. ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int((x-x^(3))^((1)/(3)))/(x^(4))dx

The value of the integral int_(1//3)^(1)((x-x^(3))^(1//3))/(x^(4))dx is

int(x^(3))/(x^(4)+1)dx

The value of int(1)/(x^(2)(x^(4)+1)^(3//4))dx , is

int((1+x)^(3))/(x^(4))dx

The value of int_(3)^(5) (x^(2))/(x^(2)-4) dx, is

The value of int_(3)^(5)(x^(2))/(x^(2)-4) dx is

The value of int1/(x^(2)(x^(4)+1)^(3//4)) dx is equal to

int(x^(1/3))/((1+x^(4/3))^(3))dx

int(x^(3)-1)/((x^(4)+1)(x+1))dx is