Home
Class 12
MATHS
The value of the integral int(1+x^(2))/(...

The value of the integral `int(1+x^(2))/(1+x^(4))dx` is equal to

A

`tan^(-1)x^(2)+C`

B

`(1)/(sqrt(2))tan^(-1)((x^(2)-1)/(sqrt(2)x))`

C

`(1)/(2sqrt(2))log((x^(2)+sqrt(2)x+1)/(x^(2)-sqrt(2)x+1))+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1+x^2}{1+x^4} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1+x^2}{1+x^4} \, dx \] We can separate the fraction: \[ I = \int \left( \frac{1}{1+x^4} + \frac{x^2}{1+x^4} \right) \, dx \] ### Step 2: Simplify the Second Term The term \( \frac{x^2}{1+x^4} \) can be rewritten: \[ \frac{x^2}{1+x^4} = \frac{x^2}{(x^2)^2 + 1} = \frac{x^2}{x^4 + 1} \] ### Step 3: Use a Substitution Let \( x^2 = t \), then \( dx = \frac{1}{2\sqrt{t}} \, dt \). The integral becomes: \[ I = \int \left( \frac{1}{1+t^2} + \frac{t}{1+t^2} \right) \frac{1}{2\sqrt{t}} \, dt \] ### Step 4: Split the Integral Now we can split the integral: \[ I = \frac{1}{2} \int \frac{1}{1+t^2} \cdot \frac{1}{\sqrt{t}} \, dt + \frac{1}{2} \int \frac{t}{1+t^2} \cdot \frac{1}{\sqrt{t}} \, dt \] ### Step 5: Solve Each Integral 1. The first integral \( \int \frac{1}{1+t^2} \cdot \frac{1}{\sqrt{t}} \, dt \) can be solved using the arctangent formula: \[ \int \frac{1}{1+t^2} \, dt = \tan^{-1}(t) \] 2. The second integral \( \int \frac{t}{1+t^2} \cdot \frac{1}{\sqrt{t}} \, dt \) can be simplified and solved using substitution. ### Step 6: Combine Results After solving both integrals, we combine the results and substitute back \( t = x^2 \). ### Final Result The final result will be: \[ I = \frac{1}{\sqrt{2}} \tan^{-1}\left(\frac{x^2 - 1}{x}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

By Simpson rule taking n=4, the value of the integral int _(0)^(1)(1)/(1+x^(2))dx is equal to

The value of the integral int_(0)^(oo)(1)/(1+x^(4))dx is

int_(0)^( If )(f(t))dt=x+int_(x)^(1)(t^(2)*f(t))dt+(pi)/(4)-1 then the value of the integral int_(-1)^(1)(f(x))dx is equal to

The value of the integral int_(-2)^(2)(1+2sin x)e^(|x|)dx is equal to

The value of the integral int_(0)^(4)(x^(2))/(x^(2)-4x+8)dx is equal to

The value of the integral int_(-2)^(2)|1-x^(2)|dx is

The integral int(1)/((1+x^(2))sqrt(1-x^(2)))dx is equal to

Let [x] denote the greatest integer less than or equal to x, then the value of the integral int_(-1)^(1)(|x|-2[x])dx is equal to

The value of the integral int_0^1 x(1-x)^n dx=

The value of the integral int_(0)^(1) x(1-x)^(n)dx , is