Home
Class 12
MATHS
If y=|cosx|+|sinx|, then (dy)/(dx)" at "...

If `y=|cosx|+|sinx|`, then `(dy)/(dx)" at "x=(2pi)/(3)` is

A

`(1-sqrt(3))/(2)`

B

0

C

`(sqrt(3)-1)/(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function \( y = |\cos x| + |\sin x| \) at \( x = \frac{2\pi}{3} \), we will follow these steps: ### Step 1: Determine the signs of \( \cos x \) and \( \sin x \) at \( x = \frac{2\pi}{3} \) At \( x = \frac{2\pi}{3} \): - \( \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} \) (negative) - \( \sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \) (positive) ### Step 2: Rewrite the function \( y \) Since \( \cos x \) is negative and \( \sin x \) is positive in this interval, we can rewrite \( y \) as: \[ y = -\cos x + \sin x \] ### Step 3: Differentiate \( y \) Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(-\cos x + \sin x) = \sin x + \cos x \] ### Step 4: Evaluate \( \frac{dy}{dx} \) at \( x = \frac{2\pi}{3} \) Now we substitute \( x = \frac{2\pi}{3} \) into the derivative: \[ \frac{dy}{dx} \bigg|_{x = \frac{2\pi}{3}} = \sin\left(\frac{2\pi}{3}\right) + \cos\left(\frac{2\pi}{3}\right) \] Using the values we found earlier: - \( \sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \) - \( \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} \) Thus, \[ \frac{dy}{dx} \bigg|_{x = \frac{2\pi}{3}} = \frac{\sqrt{3}}{2} - \frac{1}{2} \] ### Step 5: Simplify the expression Combine the terms: \[ \frac{dy}{dx} \bigg|_{x = \frac{2\pi}{3}} = \frac{\sqrt{3} - 1}{2} \] ### Final Answer The value of \( \frac{dy}{dx} \) at \( x = \frac{2\pi}{3} \) is: \[ \frac{\sqrt{3} - 1}{2} \] ---

To find the derivative \( \frac{dy}{dx} \) of the function \( y = |\cos x| + |\sin x| \) at \( x = \frac{2\pi}{3} \), we will follow these steps: ### Step 1: Determine the signs of \( \cos x \) and \( \sin x \) at \( x = \frac{2\pi}{3} \) At \( x = \frac{2\pi}{3} \): - \( \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} \) (negative) - \( \sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \) (positive) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Exercise|60 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If y=log(sinx-cosx) , then (dy)/(dx) at x=(pi)/(2) is :

If y=tan^(-1)((sinx+cosx)/(cosx-sinx))," then "(dy)/(dx)" at "x=(pi)/(4)

If : y=sinx[(1)/(cosx*cos2x)+(1)/(cos2x*cos3x)+(1)/(cos3x*cos4x)]," then: "(dy)/(dx)" at "x=(pi)/(4) is

If y=(e^(2x)cosx)/(x sinx),then(dy)/(dx) =

If y=log_(cosx)sinx, then (dy)/(dx) is equal to

If y=|tanx-|sinx|| , then the value of (dy)/(dx) at x=(5pi)/(4) is

If y(x) = cot^(-1) ((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))), x in ((pi)/(2), pi) , then (dy)/(dx) at x=(5pi)/(6) is :

If y = sinx - 3x then (dy)/(dx) =?

if y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

OBJECTIVE RD SHARMA-DIFFERENTIATION-Section I - Solved Mcqs
  1. If f(x)=|cosx-sinx|, then f'(pi/2) is equal to

    Text Solution

    |

  2. If y=|x-x^(2)|, then (dy)/(dx)" at "x=1.

    Text Solution

    |

  3. If y=|cosx|+|sinx|, then (dy)/(dx)" at "x=(2pi)/(3) is

    Text Solution

    |

  4. If f(x)= |cosxl, then f'((3pi)/4) equal to -

    Text Solution

    |

  5. If f(x) = |x|^ |tanx| then f'( -pi/6) is equal to

    Text Solution

    |

  6. If x^2+y^2=1then

    Text Solution

    |

  7. If y=cos^(-1)(cosx),t h e n(dy)/(dx) is equal to x/y (b) y/(x^2) (x^2...

    Text Solution

    |

  8. If y=sin^(-1)(sin x), then dy/dx at x =pi/2 is

    Text Solution

    |

  9. If y=sec(tan^(-1)x), then (tan^(-1)x), then (dy)/(dx)" at "x=1 is equa...

    Text Solution

    |

  10. Let f be a differentiable function satisfying [f(x)]^(n)=f(nx)" for ...

    Text Solution

    |

  11. If f(x)=|x-1|" and "g(x)=f(f(f(x))), then for xgt2,g'(x) is equal to

    Text Solution

    |

  12. Let F(x)=f(x)g(x)h(x) for all real x ,w h e r ef(x),g(x),a n dh(x) are...

    Text Solution

    |

  13. If g is inverse of function f and f'(x)=sinx, then g'(x)=

    Text Solution

    |

  14. Let f(x) be a second degree polynomial function such that f(-1)=f(1) a...

    Text Solution

    |

  15. Find the derivative of f(tanx) w.r.t. g(secx) at x=pi/4 , where f^(pri...

    Text Solution

    |

  16. The derivative of cosec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-...

    Text Solution

    |

  17. The derivative of sin^(-1)(3x-4x^(3)) with respect to sin^(-1)x, is

    Text Solution

    |

  18. If f(x)=cos{(pi)/(2)[x]-x^(3)},1ltxlt2, and [x] denotes the greatest i...

    Text Solution

    |

  19. Let f(x)=sinx,g(x)=2x" and "h(x)=cosx. If phi(x)=["go"(fh)](x)," then ...

    Text Solution

    |

  20. Let f(x) be a polynomial function satisfying f(x)+f((1)/(x))=f(x)f((1...

    Text Solution

    |