Home
Class 12
MATHS
If f(x)=cosxcos2xcos4xcos8xcos16x," then...

If `f(x)=cosxcos2xcos4xcos8xcos16x," then "f'((pi)/(4))` is

A

`sqrt(2)`

B

`(1)/(sqrt(2))`

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'\left(\frac{\pi}{4}\right) \) for the function \( f(x) = \cos x \cos 2x \cos 4x \cos 8x \cos 16x \), we will first simplify the function and then differentiate it. ### Step 1: Rewrite the function We can express the product of cosines in terms of sine using the double angle identity: \[ \cos x = \frac{\sin 2x}{2 \sin x} \] We will apply this identity iteratively to express \( f(x) \). ### Step 2: Apply the identity 1. **First application**: \[ f(x) = \cos x \cos 2x \cos 4x \cos 8x \cos 16x \] Rewrite \( \cos x \): \[ f(x) = \frac{\sin 2x}{2 \sin x} \cos 2x \cos 4x \cos 8x \cos 16x \] 2. **Second application**: Rewrite \( \cos 2x \): \[ f(x) = \frac{\sin 2x}{2 \sin x} \cdot \frac{\sin 4x}{2 \sin 2x} \cos 4x \cos 8x \cos 16x \] Simplifying gives: \[ f(x) = \frac{\sin 4x}{4 \sin x} \cos 4x \cos 8x \cos 16x \] 3. **Continue applying the identity**: Repeating this process, we get: \[ f(x) = \frac{\sin 32x}{32 \sin x} \] ### Step 3: Differentiate the function Now we differentiate \( f(x) \): \[ f(x) = \frac{\sin 32x}{32 \sin x} \] Using the quotient rule: \[ f'(x) = \frac{(32 \cos 32x \cdot \sin x) - (\sin 32x \cdot 32 \cos x)}{(32 \sin x)^2} \] ### Step 4: Evaluate at \( x = \frac{\pi}{4} \) Now we substitute \( x = \frac{\pi}{4} \): 1. Calculate \( \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} \) and \( \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} \). 2. Calculate \( 32 \cdot \frac{\pi}{4} = 8\pi \). Now substituting into the derivative: \[ f'\left(\frac{\pi}{4}\right) = \frac{(32 \cos(8\pi) \cdot \frac{1}{\sqrt{2}}) - (\sin(8\pi) \cdot 32 \cdot \frac{1}{\sqrt{2}})}{(32 \cdot \frac{1}{\sqrt{2}})^2} \] Since \( \cos(8\pi) = 1 \) and \( \sin(8\pi) = 0 \): \[ f'\left(\frac{\pi}{4}\right) = \frac{(32 \cdot 1 \cdot \frac{1}{\sqrt{2}}) - (0)}{(32 \cdot \frac{1}{\sqrt{2}})^2} \] This simplifies to: \[ f'\left(\frac{\pi}{4}\right) = \frac{32/\sqrt{2}}{1024/2} = \frac{32/\sqrt{2}}{512} = \frac{32}{512\sqrt{2}} = \frac{1}{16\sqrt{2}} \] ### Final Result Thus, the value of \( f'\left(\frac{\pi}{4}\right) \) is: \[ \frac{1}{16\sqrt{2}} \]

To find \( f'\left(\frac{\pi}{4}\right) \) for the function \( f(x) = \cos x \cos 2x \cos 4x \cos 8x \cos 16x \), we will first simplify the function and then differentiate it. ### Step 1: Rewrite the function We can express the product of cosines in terms of sine using the double angle identity: \[ \cos x = \frac{\sin 2x}{2 \sin x} \] We will apply this identity iteratively to express \( f(x) \). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Exercise|60 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

intcos2xcos4xdx

intsinxcosxcos2xcos4xdx

inte^(x)sinxcosxcos2xcos4xdx

Let I=int_0^(10pi) (cos6xcos7xcos8xcos9x)/(1+e^(2sin^3 4x))dx Now answer the question:If I=k int_0^(pi/2) cos6xcos7xcos8xcos9xdx , then k = (A) 5 (B) 10 (C) 20 (D) none of these

intsin4xcos3xdx

STATEMENT-1 : If f(x)=int(dx)/(sin^(1//2)xcos^(7//2)x) , then the value of f((pi)/(4))-f(0) is equal to (12)/(5) . and STATEMENT-2 : To find the intsin^(m)xcos^(n)xdx if m+n=-ve even, then we can substitute tanx=t .

Let I=int_0^(10pi) (cos6xcos7xcos8xcos9x)/(1+e^(2sin^3 4x))dx Now answer the question:If I=C int_0^(pi/2) cos6xcos8xcos2xdx , then C = (A) 5 (B) 10 (C) 20 (D) none of these

int5cos8xcos 2xdx=

If sin x+cos x=1+sin x.cos x then x=

OBJECTIVE RD SHARMA-DIFFERENTIATION-Section I - Solved Mcqs
  1. If y=f((2x-1)/(x^(2)+1)) and f^'(x)=sinx^(2), then (dy)/(dx) is equal ...

    Text Solution

    |

  2. Let f be a differentiable function defined for all x in R such that f(...

    Text Solution

    |

  3. If f(x)=cosxcos2xcos4xcos8xcos16x," then "f'((pi)/(4)) is

    Text Solution

    |

  4. If f(x) = cos x\ cos 2x\ cos 2^2\ x\ cos 2^3 x\ ....cos2^(n-1) x and n...

    Text Solution

    |

  5. f^(prime)(x)=varphi^(prime)(x)=f(x) for all xdot Also, f(3)=5a n df^(p...

    Text Solution

    |

  6. if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

    Text Solution

    |

  7. Let f be a one-one function satisfying f'(x)=f(x) then (f^-1)''(x) is ...

    Text Solution

    |

  8. Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

    Text Solution

    |

  9. The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2...

    Text Solution

    |

  10. The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2...

    Text Solution

    |

  11. If f(x)=tan^(-1)((3x-x^(3))/(1-3x^(2))) then (d)/(dx)(f(x)) is equal t...

    Text Solution

    |

  12. If 5f(x)+3f(1/x)=x+2 and y=x f(x), then find dy/dx at x=1.

    Text Solution

    |

  13. Let f and g be differentiable functions satisfying g(a) = b,g' (a) = ...

    Text Solution

    |

  14. If y=f(x) is an odd differentiable function defined on (-oo,oo) such t...

    Text Solution

    |

  15. If P(x) is a polynomial such that P(x^(2)+1)={P(x)}^(2)+1 and P(0)=0...

    Text Solution

    |

  16. Let f(x) be a differentiable function such that f'(x)=sinx+sin4xcosx...

    Text Solution

    |

  17. Let f(x)=(x^2-x)/(x^2+2x) then d(f^(-1)x)/(dx) is equal to

    Text Solution

    |

  18. Let f(x) be polynomial function of defree 2 such that f(x)gt0 for all ...

    Text Solution

    |

  19. If f is a bijection satisfying f'(x)=sqrt((1-{f(x)}^(2)), then (f^(1))...

    Text Solution

    |

  20. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'((1)/( e...

    Text Solution

    |