Home
Class 12
MATHS
If y=log{((1+x)/(1-x))^(1//4)}-(1)/(2)ta...

If `y=log{((1+x)/(1-x))^(1//4)}-(1)/(2)tan^(-1)x," then "(dy)/(dx)=`

A

`(x)/(1-x^(2))`

B

`(x^(2))/(1-x^(4))`

C

`(x)/(1+x^(4))`

D

`(x)/(1-x^(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function given by: \[ y = \log\left(\frac{1+x}{1-x}\right)^{\frac{1}{4}} - \frac{1}{2} \tan^{-1}(x) \] ### Step 1: Rewrite the Logarithm Using the property of logarithms, we can rewrite the equation as: \[ y = \frac{1}{4} \log\left(\frac{1+x}{1-x}\right) - \frac{1}{2} \tan^{-1}(x) \] ### Step 2: Differentiate the First Term Now, we differentiate \( y \) with respect to \( x \): Using the chain rule, the derivative of \( \log(u) \) is \( \frac{1}{u} \cdot \frac{du}{dx} \). Here, \( u = \frac{1+x}{1-x} \). 1. Differentiate \( \frac{1}{4} \log\left(\frac{1+x}{1-x}\right) \): - \( \frac{d}{dx} \left(\frac{1}{4} \log\left(\frac{1+x}{1-x}\right)\right) = \frac{1}{4} \cdot \frac{1}{\frac{1+x}{1-x}} \cdot \frac{d}{dx}\left(\frac{1+x}{1-x}\right) \) 2. Now, find \( \frac{d}{dx}\left(\frac{1+x}{1-x}\right) \): - Using the quotient rule: \( \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \) - Here, \( u = 1+x \) and \( v = 1-x \) - \( \frac{du}{dx} = 1 \) and \( \frac{dv}{dx} = -1 \) - Thus, \[ \frac{d}{dx}\left(\frac{1+x}{1-x}\right) = \frac{(1-x)(1) - (1+x)(-1)}{(1-x)^2} = \frac{(1-x) + (1+x)}{(1-x)^2} = \frac{2}{(1-x)^2} \] 3. Substitute back into the derivative: \[ \frac{d}{dx}\left(\frac{1}{4} \log\left(\frac{1+x}{1-x}\right)\right) = \frac{1}{4} \cdot \frac{1-x}{1+x} \cdot \frac{2}{(1-x)^2} = \frac{1}{2(1+x)(1-x)} \] ### Step 3: Differentiate the Second Term Now, differentiate the second term \( -\frac{1}{2} \tan^{-1}(x) \): \[ \frac{d}{dx}\left(-\frac{1}{2} \tan^{-1}(x)\right) = -\frac{1}{2} \cdot \frac{1}{1+x^2} \] ### Step 4: Combine the Derivatives Now combine the derivatives from both terms: \[ \frac{dy}{dx} = \frac{1}{2(1+x)(1-x)} - \frac{1}{2(1+x^2)} \] ### Step 5: Simplify the Expression To simplify, we can find a common denominator: The common denominator is \( 2(1+x)(1-x)(1+x^2) \). 1. Rewrite each term: \[ \frac{1}{2(1+x)(1-x)} = \frac{(1+x^2)}{2(1+x)(1-x)(1+x^2)} \] \[ -\frac{1}{2(1+x^2)} = -\frac{(1+x)(1-x)}{2(1+x)(1-x)(1+x^2)} \] 2. Combine: \[ \frac{dy}{dx} = \frac{(1+x^2) - (1+x)(1-x)}{2(1+x)(1-x)(1+x^2)} \] 3. Simplify the numerator: \[ (1+x^2) - (1+x-x+x^2) = (1+x^2) - (1+x-x+x^2) = (1+x^2) - (1+x^2) = 0 \] Thus, we find: \[ \frac{dy}{dx} = \frac{0}{2(1+x)(1-x)(1+x^2)} = 0 \] ### Final Answer \[ \frac{dy}{dx} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Exercise|60 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

if y=log((1+x)/(1-x))^((1)/(4))-(1)/(2)tan^(-1)x, th e n (dy)/(dx)

If : y=(1+x^(2))*tan^(-1)x-x," then: "(dy)/(dx)=

If y=log[(x-1)^(1//2)-(x+1)^(1//2)]," then: "(dy)/(dx)=

If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

If y=tan^(-1)(1+2x)+tan^(-1)(1-2x),"then "dy/dx=

If y=e^((1/2)log(1+tan^2 x)) then (dy)/(dx)=

y=3^(log_(9)(1+tan^(2)x)) then (dy)/(dx)=

If y=log((1-x^(2))/(1+x^(2)))," then "(dy)/(dx)=

if y=x^(ln x)tan^(-1)x then find (dy)/(dx) at x=1

If y=log[(x-1)^(x-1)]-log[(x+1)^(x+1)]," then: "(dy)/(dx)=

OBJECTIVE RD SHARMA-DIFFERENTIATION-Chapter Test
  1. If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

    Text Solution

    |

  2. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'( e )

    Text Solution

    |

  3. y=sin^(-1)[sqrt(x-a x)-sqrt(a-a x)]

    Text Solution

    |

  4. Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^...

    Text Solution

    |

  5. If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4)...

    Text Solution

    |

  6. If f(x)=10cosx+(13+2x)sinx then f'(x)+f(x)=

    Text Solution

    |

  7. If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (...

    Text Solution

    |

  8. If f(x)=log{(u(x))/(v(x))},\ u(1)=v(1) and u^(prime)(1)=v^(prime)(1)=2...

    Text Solution

    |

  9. If f'(x)=arc tan((x^(x)-x^(-x))/(2)), then f'(1) is equal to

    Text Solution

    |

  10. Let f(x)=2^(2x-1)" and "g(x)=-2^(x)+2xlog2. Then the set of points sat...

    Text Solution

    |

  11. If y=logu|cos4x|+|sinx|,where u=sec2x find (dy)/(dx) at x=-pi/6

    Text Solution

    |

  12. If f(4)=4,f'(4)=1, then lim(x in4) (2-sqrt(f(x)))/(2-sqrt(x)) is equal...

    Text Solution

    |

  13. if 2x^2-3xy+y^2+x+2y-8=0 then (dy)/(dx)

    Text Solution

    |

  14. If y=log{((1+x)/(1-x))^(1//4)}-(1)/(2)tan^(-1)x," then "(dy)/(dx)=

    Text Solution

    |

  15. If x=costheta,y=sin50," then "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=

    Text Solution

    |

  16. If f : R - R is an even function which is twice differentiable on R an...

    Text Solution

    |

  17. Observe the following statements: "I. If "f(x)=ax^(41)+bx^(-40)," ...

    Text Solution

    |

  18. If x=e^tsint,y=e^tcost then (d^2y)/(dx^2) at x=pi is

    Text Solution

    |

  19. The value of (dy)/(dx) at x=(pi)/(2), where y is given by y=x^(sinx)...

    Text Solution

    |

  20. If 2^x+2^y=2^(x+y), then (dy)/(dx) is equal to

    Text Solution

    |