Home
Class 12
MATHS
Statement-2f(x)=(sin x)/(x) lt 1 for lt...

Statement-2`f(x)=(sin x)/(x) lt 1 for lt x lt pi/2`
Statement -2 `f(x)=(sin x)/(x)` is decreasing function on `(0,pi//2)`

A

Statement-1 True statement -1 is True,Statement -2 is True statement -2 is a correct explanation for Statement-4

B

Statement-1 True statement -1 is True,Statement -2 is True statement -2 is not a correct explanation for Statement-4

C

Statement-1 True statement -1 is True,Statement -2 is False

D

Statement-1 is False ,Statement -2 is True

Text Solution

Verified by Experts

The correct Answer is:
A

We have `f(x)=(sinx)/(x)`
`rArr f(x) =(x cos x-sinx)/(x^2)`
`f(x)=g(x)/x^2,where g(x)=x cosx-sinx`
Now g(x) = x cos x-sin x
`rArr f(x)=-xsinx lt 0 "for" x in (0,pi//2)`
`rArr g(x) "is strictly decreasing in" [0,pi//2]`
`rArr g(x) lt g(0) " for all " x in (0,pi//2]`
`rArr g(x) lt 0 "for all " x in (0,pi//2]`
`f'(x) " is decreasing on x in" (0,pi//2]`
`rArr g(pi/2)lt f (x) le underset(xrarr0)limf(x)"for all " x in(0,pi//2]`
`rArr 2/pi lt (sinx)/(x)lt 1 "for all " x in (0,pi//2]`
Hence both the statements are true and statement-2 is a correct explanation of statement-1
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|36 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|69 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA|Exercise Exercise|45 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If 0 lt x lt (pi)/(2) , then ("sin x + cosec x") is

If sin x =(3)/(5) " and " 0 lt x lt (pi)/(2) find the value of tan (x)/(2)

Statement 1: Let f(x)=sin(cos x) in [0,(pi)/(2)]* Then f(x) is decreasing in [0,(pi)/(2)] Statement 2:cos x is a decreasing function AA x in[0,(pi)/(2)]

If 0 lt x lt pi and cos x + sin x = 1/2 , then tan x is

f'(sin^(2)x)lt f'(cos^(2)x) for x in

Statement -1: sin 1 lt sin 2 lt sin3 Statement-2: sin3 lt sin2 lt sin1 Statement-3: sinx_(1) lt sinx_(2), x_(1) , x_(2) in (0,pi/2)

If 0 lt x lt pi/2 and sin^(n) x + cos^(n) x ge 1 , then