Home
Class 12
MATHS
f(x)=(e^(2x)-1)/(e^(2x)+1) is...

`f(x)=(e^(2x)-1)/(e^(2x)+1)` is

A

an increasing function R

B

a decreasing function on R

C

an even function on R

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(x) = \frac{e^{2x} - 1}{e^{2x} + 1} \) is increasing or decreasing, we will follow these steps: ### Step 1: Simplify the function We start with the given function: \[ f(x) = \frac{e^{2x} - 1}{e^{2x} + 1} \] This function is already in a simplified form, so we can proceed to differentiate it. ### Step 2: Differentiate the function We will use the quotient rule to differentiate \( f(x) \). The quotient rule states that if you have a function \( \frac{u}{v} \), then its derivative is given by: \[ f'(x) = \frac{u'v - uv'}{v^2} \] Here, let \( u = e^{2x} - 1 \) and \( v = e^{2x} + 1 \). Calculating the derivatives: - \( u' = 2e^{2x} \) - \( v' = 2e^{2x} \) Now applying the quotient rule: \[ f'(x) = \frac{(2e^{2x})(e^{2x} + 1) - (e^{2x} - 1)(2e^{2x})}{(e^{2x} + 1)^2} \] ### Step 3: Simplify the derivative Now we simplify the numerator: \[ = \frac{2e^{2x}(e^{2x} + 1) - 2e^{2x}(e^{2x} - 1)}{(e^{2x} + 1)^2} \] Distributing \( 2e^{2x} \): \[ = \frac{2e^{4x} + 2e^{2x} - 2e^{4x} + 2e^{2x}}{(e^{2x} + 1)^2} \] This simplifies to: \[ = \frac{4e^{2x}}{(e^{2x} + 1)^2} \] ### Step 4: Analyze the sign of the derivative Now we analyze \( f'(x) \): \[ f'(x) = \frac{4e^{2x}}{(e^{2x} + 1)^2} \] Since \( e^{2x} > 0 \) for all real \( x \), both the numerator \( 4e^{2x} \) and the denominator \( (e^{2x} + 1)^2 \) are always positive. Therefore, \( f'(x) > 0 \) for all real \( x \). ### Step 5: Conclusion Since the derivative \( f'(x) > 0 \) for all \( x \), we conclude that the function \( f(x) \) is an increasing function for all real numbers. ### Final Answer Thus, the function \( f(x) = \frac{e^{2x} - 1}{e^{2x} + 1} \) is an increasing function for all real numbers. ---
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|8 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA|Exercise Exercise|45 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

The function f:R^(+)rarr(1,e) defined by f(x)=(x^(2)+e)/(x^(2)+1) is

(e^(2x)+2e^(x)+1)/(e^(x))

Find the possible values of a such that f(x)=e^(2x)-(a+1)e^(x)+2x is monotonically increasing for x in R.

the function f(x)=(x)/(e^(x)-1)+(x)/(2)+1 is

int (e^(2x)-1)/(e^(2x)+1) dx=?

int(e^(2x)+1)/(e^(2x)-1)dx=

Statement -1 : If I_(1)=int(e^(x))/(e^(4x)+e^(2x)+1)dx and I_(2)=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx , then I_(2)-I_(1)=(1)/(2)log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C where C is an arbitrary constant. Statement -2 : A primitive of f(x) =(x^(2)-1)/(x^(4)+x^(2)+1) is (1)/(2)log((x^(2)-x+1)/(x^(2)+x+1)) .

OBJECTIVE RD SHARMA-INCREASING AND DECREASING FUNCTIONS-Exercise
  1. The function f(x)=(asinx+b cosx)/(c sinx+d cos x) is decreasing, if

    Text Solution

    |

  2. If f(x)= kx^3-9x^2+9x+3 is increasing on R then

    Text Solution

    |

  3. The values of a for which the function (a+2)x^3 - 3x^2 + 9ax-1 decreas...

    Text Solution

    |

  4. The function y=x^3-3x^2+6x-17

    Text Solution

    |

  5. The interval in which the function x^3 increases less rapidly than 6x^...

    Text Solution

    |

  6. The interval in which the function f(x)=sin x-cos x -ax +b decreases f...

    Text Solution

    |

  7. The function y=cot^(-1) x- log (x+sqrt(x^2+1)) is increasing in

    Text Solution

    |

  8. the function (|x-1|)/x^2 is monotonically decreasing at the point

    Text Solution

    |

  9. Find the value of a in order that f(x)=sqrt(3)sinx-cosx-2a x+b decreas...

    Text Solution

    |

  10. A function is matched below against an interval where it is supposed t...

    Text Solution

    |

  11. A condition for a function y=f(x) to have an inverse is that it should...

    Text Solution

    |

  12. Let g(x)=f(x) +f'(1-x) and f''(x) lt 0 ,0 le x le 1 Then

    Text Solution

    |

  13. The function f(x)=(ln(pi+x))/(ln(e+x)) is increasing in (0,oo) decrea...

    Text Solution

    |

  14. f(x)=(e^(2x)-1)/(e^(2x)+1) is

    Text Solution

    |

  15. y={x(x-3)^2 increases for all values of x lying in the interval

    Text Solution

    |

  16. If a<0, the function f(x)=e^(ax)+e^(-ax) is a monotonically decreasing...

    Text Solution

    |

  17. The function f(x)= tan x - x

    Text Solution

    |

  18. The function f(x)=cot^(-1)x+x increases in the interval (a) (1,\ oo) ...

    Text Solution

    |

  19. The function f(x)=(log)e(x^3+sqrt(x^6+1)) is of the following types:

    Text Solution

    |

  20. Let f(x)=x^3-6x^2+15 x+3 . Then, (a) f(x)>0 for all x in R (b) f(x)>...

    Text Solution

    |