Home
Class 12
MATHS
The range of the function is f(x)=log5(2...

The range of the function is `f(x)=log_5(25-x^2)` is

A

`[0, 5]`

B

` [0, 2)`

C

` (0, 2)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
D

Cleary, f(x) is defined, if
`25-x^(2) gt 0 rArr - 5 lt x lt 5`
Now, let `y = log_(5) (25-x^(2))`. Then
`5^(y) = 25- x^(2) rArr - 5 lt x lt 5`
For x to real, we must have
`25-5^(y) ge 0 rArr 5^(y) le 25 rArr y le 2`
Also, `y =f(x) to - oo` as `x to pm5`.
Hence, range `(f) = (-oo,2]`
Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function f(x)=log_(e)(3x^(2)+4) is equal to

Range of the function f(x)=log_(e)sqrt(4-x^(2)) is

The range of the function f(x)=(5)/(3-x^(2)) is

Range of the function f(x)=log_(0.5)(3x-x^(2)-2)

The range of the function f(x) = log_(3) (5+4x - x^(2)) , is

The range of the function f(x)=sin^(-1)(log_(2)(-x^(2)+2x+3)) is

The range of the function f(x)=[log_((2)/(3))|(x^(2)-1)/(x^(2)+1)|] where [-1 denotes the greatest integer function is

The range of the function f(x)=(x^(2)-2)/(x^(2)-3) is

The range of the function f(x)=log_((1)/(2))log_(5)(sqrt(2x^(2)+4x+7)) is

The range of the function f(x)=log_(3)((x^(2)-5x+6)/(x^(2)-5x+4)) is