Home
Class 12
MATHS
Given that the vectors vec(a) and vec(b)...

Given that the vectors `vec(a) and vec(b)` are non- collinear, the values of x and y for which the vector equality ` 2 vec(u) -vec(v)= vec(w)` holds true if `vec(u) = x vec(a) + 2y vec(b), vec(v)= - 2 y vec (a) + 3 x vec(b), vec(w) = 4 vec(a)-2 vec(b) ` are

A

`x=(4)/(7), y= (6)/(7)`

B

`x=(10)/(7), y= (4)/(7)`

C

`x=(8)/(7), y= (2)/(7)`

D

`x=2, y= 3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the values of \( x \) and \( y \) such that the vector equality \( 2 \vec{u} - \vec{v} = \vec{w} \) holds true, given the definitions of the vectors \( \vec{u} \), \( \vec{v} \), and \( \vec{w} \). ### Step 1: Write down the given vectors We have: - \( \vec{u} = x \vec{a} + 2y \vec{b} \) - \( \vec{v} = -2y \vec{a} + 3x \vec{b} \) - \( \vec{w} = 4 \vec{a} - 2 \vec{b} \) ### Step 2: Substitute the vectors into the equation Substituting \( \vec{u} \), \( \vec{v} \), and \( \vec{w} \) into the equation \( 2 \vec{u} - \vec{v} = \vec{w} \): \[ 2(x \vec{a} + 2y \vec{b}) - (-2y \vec{a} + 3x \vec{b}) = 4 \vec{a} - 2 \vec{b} \] ### Step 3: Simplify the left-hand side Calculating the left-hand side: \[ 2(x \vec{a} + 2y \vec{b}) + 2y \vec{a} - 3x \vec{b} = 2x \vec{a} + 4y \vec{b} + 2y \vec{a} - 3x \vec{b} \] Combine like terms: \[ (2x + 2y) \vec{a} + (4y - 3x) \vec{b} \] ### Step 4: Set the left-hand side equal to the right-hand side Now, we set the simplified left-hand side equal to the right-hand side: \[ (2x + 2y) \vec{a} + (4y - 3x) \vec{b} = 4 \vec{a} - 2 \vec{b} \] ### Step 5: Equate coefficients of \( \vec{a} \) and \( \vec{b} \) From the equation, we can equate the coefficients of \( \vec{a} \) and \( \vec{b} \): 1. For \( \vec{a} \): \( 2x + 2y = 4 \) 2. For \( \vec{b} \): \( 4y - 3x = -2 \) ### Step 6: Solve the first equation for \( y \) From the first equation: \[ 2x + 2y = 4 \implies x + y = 2 \implies y = 2 - x \] ### Step 7: Substitute \( y \) into the second equation Now substitute \( y \) into the second equation: \[ 4(2 - x) - 3x = -2 \] Expanding this gives: \[ 8 - 4x - 3x = -2 \implies 8 - 7x = -2 \] ### Step 8: Solve for \( x \) Rearranging gives: \[ -7x = -2 - 8 \implies -7x = -10 \implies x = \frac{10}{7} \] ### Step 9: Substitute \( x \) back to find \( y \) Now substitute \( x \) back to find \( y \): \[ y = 2 - x = 2 - \frac{10}{7} = \frac{14}{7} - \frac{10}{7} = \frac{4}{7} \] ### Final Answer Thus, the values of \( x \) and \( y \) are: \[ x = \frac{10}{7}, \quad y = \frac{4}{7} \]

To solve the problem step by step, we need to find the values of \( x \) and \( y \) such that the vector equality \( 2 \vec{u} - \vec{v} = \vec{w} \) holds true, given the definitions of the vectors \( \vec{u} \), \( \vec{v} \), and \( \vec{w} \). ### Step 1: Write down the given vectors We have: - \( \vec{u} = x \vec{a} + 2y \vec{b} \) - \( \vec{v} = -2y \vec{a} + 3x \vec{b} \) - \( \vec{w} = 4 \vec{a} - 2 \vec{b} \) ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|30 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

Two vectors vec(a) and vec(b) are non-zero and non-collinear. What is the value of x for which the vectors vec(p)(x-2)vec(a)+vec(b) and vec(q)=(x+1)vec(a)-vec(b) are collinear?

Given that the vectors alpha and beta are non- collinear.The values of x and y for which vec u-vec v=vec w holds true if vec u=2x alpha+y beta,vec v=2y alpha+3x beta and vec w=2 alpha-5 beta are

If vec a and vec b are non-collinear vectors,find the value of x for which the vectors vec alpha=(2x+1)vec a-vec b and vec beta=(x-2)vec a+vec b are collinear.

If vec a and vec b are non-collinear vectors,then the value of x for which vectors vec alpha=(x-2)vec a+vec b and vec beta=(3+2x)vec a-2vec b are collinear,is given by

Vectors vec a and vec b are non-collinear.Find for what value of n vectors vec c=(n-2)vec a+vec b and vec d=(2n+1)vec a-vec b are collinear?

If vec a and vec b are non-collinear unit vectors and |vec a+vec b|=sqrt(3) then (2vec a+5vec b)*(3vec a-vec b)=

If vec a and vec b are two non-collinear unit vectors such that |vec a+vec b|=sqrt(3), find (2vec a-5vec b)*(3vec a+vec b)

If vec a and vec b are two non collinear unit vectors such that |vec a+vec b|=3, find (2vec a-5vec b)3vec a+vec b

If vec(a) and vec(b) are unit vectors, then what is the value of |vec(a) xx vec(b)|^(2) + (vec(a).vec(b))^(2) ?

OBJECTIVE RD SHARMA-ALGEBRA OF VECTORS-Chapter Test
  1. Given that the vectors vec(a) and vec(b) are non- collinear, the valu...

    Text Solution

    |

  2. If the vectors vec a =2hati + 3hatj +6hatk and vec b are collinear and...

    Text Solution

    |

  3. If vec a , vec b , vec c are three non-zero vectors (no two of which ...

    Text Solution

    |

  4. Vectors vec aa n d vec b are non-collinear. Find for what value of...

    Text Solution

    |

  5. If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati ...

    Text Solution

    |

  6. If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

    Text Solution

    |

  7. If the points with position vectors 60hati+3hatj, 40 hati-8hatj and a ...

    Text Solution

    |

  8. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  9. ABCDEF is a regular hexagon. Find the vector vec AB + vec AC + vec AD ...

    Text Solution

    |

  10. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  11. If G is the centroid of Delta ABC and G' is the centroid of Delta A'...

    Text Solution

    |

  12. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  13. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  14. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  15. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  16. In a Delta ABC, if vec(AB) = 3 hati + 4 hatk, vec(AC) = 5 hati + 2 hat...

    Text Solution

    |

  17. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  18. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  19. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  20. If OACB is a parallelogramwith vec(OC) = vec a and vec (AB) = vec b...

    Text Solution

    |

  21. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |