Home
Class 12
MATHS
In a quadrilateral ABCD, vec(AB) + vec(D...

In a quadrilateral ABCD, `vec(AB) + vec(DC) =`

A

`vec(AB) + vec(CB)`

B

`vec(AC) + vec(BD)`

C

`vec(AC) + vec(DB)`

D

`vec(AD) - vec(CB)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to express the vector sum \( \vec{AB} + \vec{DC} \) in terms of other vectors in the quadrilateral ABCD. ### Step-by-Step Solution: 1. **Identify the vectors**: We have the vectors \( \vec{AB} \), \( \vec{BC} \), \( \vec{CD} \), and \( \vec{DA} \) in the quadrilateral ABCD. 2. **Express \( \vec{DC} \)**: The vector \( \vec{DC} \) can be expressed in terms of \( \vec{CD} \): \[ \vec{DC} = -\vec{CD} \] 3. **Combine the vectors**: Now we can write the expression for \( \vec{AB} + \vec{DC} \): \[ \vec{AB} + \vec{DC} = \vec{AB} - \vec{CD} \] 4. **Add and subtract \( \vec{BC} \)**: We can add and subtract \( \vec{BC} \) to the equation: \[ \vec{AB} + \vec{DC} = \vec{AB} + \vec{BC} - \vec{BC} - \vec{CD} \] 5. **Group the vectors**: Rearranging gives us: \[ = (\vec{AB} + \vec{BC}) - (\vec{BC} + \vec{CD}) \] 6. **Use triangle law of vector addition**: From the triangle law of vector addition: \[ \vec{AB} + \vec{BC} = \vec{AC} \] and \[ \vec{BC} + \vec{CD} = \vec{BD} \] Therefore, we can substitute: \[ = \vec{AC} - \vec{BD} \] 7. **Express \( \vec{BD} \)**: Since \( \vec{BD} = -\vec{DB} \), we can rewrite the equation: \[ = \vec{AC} + \vec{DB} \] 8. **Final result**: Thus, we conclude that: \[ \vec{AB} + \vec{DC} = \vec{AC} + \vec{DB} \] ### Final Answer: \[ \vec{AB} + \vec{DC} = \vec{AC} + \vec{DB} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|39 Videos
OBJECTIVE RD SHARMA-ALGEBRA OF VECTORS-Chapter Test
  1. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  2. If G is the centroid of Delta ABC and G' is the centroid of Delta A'...

    Text Solution

    |

  3. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  4. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  5. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  6. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  7. In a Delta ABC, if vec(AB) = 3 hati + 4 hatk, vec(AC) = 5 hati + 2 hat...

    Text Solution

    |

  8. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  9. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  10. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  11. If OACB is a parallelogramwith vec(OC) = vec a and vec (AB) = vec b...

    Text Solution

    |

  12. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |

  13. If ABCDEF is a regular hexagon then vec(AD)+vec(EB)+vec(FC) equals :

    Text Solution

    |

  14. If the points with position vectors 20 hati + p hatj , 5 hati - hat...

    Text Solution

    |

  15. If the position vector of a point A is vec a + 2 vec b and vec a divi...

    Text Solution

    |

  16. If vec a ,\ vec b ,\ vec c and vec d are the position vectors of p...

    Text Solution

    |

  17. Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = v...

    Text Solution

    |

  18. If G is the intersection of diagonals of a parallelogram ABCD and O is...

    Text Solution

    |

  19. The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin a...

    Text Solution

    |

  20. In a regular hexagon ABCDEF, vecAB=a, vecBC=b and vecCD = c. Then, vec...

    Text Solution

    |