Home
Class 12
MATHS
The position vectors of P and Q are resp...

The position vectors of P and Q are respectively `vec a and vec b `. If R is a point on `vec(PQ) ` such that `vec(PR) = 5 vec(PQ),` then the position vector of R, is

A

`5 vec b - 4 vec a `

B

`5 vec b + 4 vec a `

C

`4 vec b - 5 vec a `

D

`4 vec b + 5 vec a `

Text Solution

AI Generated Solution

The correct Answer is:
To find the position vector of point R, we will follow these steps: ### Step 1: Understand the given information Let the position vectors of points P and Q be represented as: - \( \vec{P} = \vec{a} \) - \( \vec{Q} = \vec{b} \) The vector \( \vec{PQ} \) can be expressed as: \[ \vec{PQ} = \vec{Q} - \vec{P} = \vec{b} - \vec{a} \] ### Step 2: Express \( \vec{PR} \) in terms of \( \vec{PQ} \) We know that \( \vec{PR} = 5 \vec{PQ} \). Therefore, we can write: \[ \vec{PR} = 5(\vec{Q} - \vec{P}) = 5(\vec{b} - \vec{a}) \] ### Step 3: Relate \( \vec{R} \) to \( \vec{P} \) and \( \vec{Q} \) Using the definition of \( \vec{PR} \): \[ \vec{R} - \vec{P} = \vec{PR} \] Substituting the expression for \( \vec{PR} \): \[ \vec{R} - \vec{a} = 5(\vec{b} - \vec{a}) \] ### Step 4: Solve for \( \vec{R} \) Rearranging the equation gives: \[ \vec{R} = \vec{a} + 5(\vec{b} - \vec{a}) \] Expanding this: \[ \vec{R} = \vec{a} + 5\vec{b} - 5\vec{a} = 5\vec{b} - 4\vec{a} \] ### Step 5: Final expression for \( \vec{R} \) Thus, the position vector of point R is: \[ \vec{R} = 5\vec{b} - 4\vec{a} \] ### Summary The position vector of point R is \( \vec{R} = 5\vec{b} - 4\vec{a} \). ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

The position vectors of P and Q are respectively a and b. If R is a point on PQ such that PR=5PQ, then the position vector of R is

If a and b are position vectors of A and B respectively the position vector of a point C on AB produced such that vec AC=3vec AB is

The position vector of two points A and B are 6vec(a) + 2vec(b) and vec(a) - vec(b) . If a point C divides AB in the ratio 3:2 then shown that the position vector of C is 3vec(a) - vec(b) .

If veca and vecb are position vectors of A and B respectively, then the position vector of a point C in vec(AB) produced such that vec(AC) =2015 vec(AB) is

Let ABC be a triangle whose circumcentre is at P. If the position vectors of A, B, C and P are vec(a) , vec(b) , vec(c ) and (vec(a) + vec(b) + vec(c ))/(4) respectively, then the position vector of the orthocentre of this triangle is

The position vector of A,B are vec a and vec b respectively.The position vector of C is (5(vec a)/(3))-vec b then

If vec(a) and vec(b) are position vectors of the points A and B respectively, then what is the position vector of a point C on AB produced such that vec(AC) = vec(2AB) ?

If vec a,vec b,vec c are position vectors of the vertices of a triangle,then write the position vector of its centroid.

OBJECTIVE RD SHARMA-ALGEBRA OF VECTORS-Chapter Test
  1. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  2. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  3. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  4. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  5. In a Delta ABC, if vec(AB) = 3 hati + 4 hatk, vec(AC) = 5 hati + 2 hat...

    Text Solution

    |

  6. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  7. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  8. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  9. If OACB is a parallelogramwith vec(OC) = vec a and vec (AB) = vec b...

    Text Solution

    |

  10. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |

  11. If ABCDEF is a regular hexagon then vec(AD)+vec(EB)+vec(FC) equals :

    Text Solution

    |

  12. If the points with position vectors 20 hati + p hatj , 5 hati - hat...

    Text Solution

    |

  13. If the position vector of a point A is vec a + 2 vec b and vec a divi...

    Text Solution

    |

  14. If vec a ,\ vec b ,\ vec c and vec d are the position vectors of p...

    Text Solution

    |

  15. Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = v...

    Text Solution

    |

  16. If G is the intersection of diagonals of a parallelogram ABCD and O is...

    Text Solution

    |

  17. The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin a...

    Text Solution

    |

  18. In a regular hexagon ABCDEF, vecAB=a, vecBC=b and vecCD = c. Then, vec...

    Text Solution

    |

  19. If three points A, B and C have position vectors hati + x hatj + 3 ha...

    Text Solution

    |

  20. If the position vectors of the vertices of a triangle of a triangle ar...

    Text Solution

    |