Home
Class 12
MATHS
If OACB is a parallelogramwith vec(OC...

If OACB is a parallelogramwith ` vec(OC) = vec a and vec (AB) = vec b, " then " vec(OA)=`

A

`vec a + vec b `

B

`vec q - vec b `

C

`(1)/(2) (vec b - veca)`

D

`(1)/(2) (vec a - vec b )`

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector \( \vec{OA} \) in the parallelogram \( OACB \) where \( \vec{OC} = \vec{a} \) and \( \vec{AB} = \vec{b} \), we can use the properties of vectors in a parallelogram. ### Step-by-Step Solution: 1. **Understand the Parallelogram Properties**: In a parallelogram, opposite sides are equal in length and direction. Therefore, we have: \[ \vec{OC} = \vec{OA} + \vec{AC} \] and \[ \vec{AB} = \vec{AC} - \vec{BC} \] 2. **Express \( \vec{AC} \)**: From the properties of the parallelogram, we know that: \[ \vec{AC} = \vec{AB} + \vec{BC} \] Since \( \vec{BC} = -\vec{AB} \) (because \( \vec{AB} \) and \( \vec{BC} \) are in opposite directions), we can simplify this to: \[ \vec{AC} = \vec{b} + (-\vec{b}) = 0 \] 3. **Set Up the Equation**: We can rewrite the equation for \( \vec{OC} \): \[ \vec{OC} = \vec{OA} + \vec{AC} \] Plugging in \( \vec{AC} = \vec{b} \), we have: \[ \vec{a} = \vec{OA} + \vec{b} \] 4. **Rearrange to Solve for \( \vec{OA} \)**: Now, we can isolate \( \vec{OA} \): \[ \vec{OA} = \vec{a} - \vec{b} \] ### Final Answer: Thus, the vector \( \vec{OA} \) is given by: \[ \vec{OA} = \vec{a} - \vec{b} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

If OACB is a parallelogram with vec OC=vec a and vec AB=vec b, then vec OA is equal to

If E is the intersection point of diagonals of parallelogram ABCD and vec( OA) + vec (OB) + vec (OC) + vec (OD) = xvec (OE) where O is origin then x=

Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = vec b, then the vec(AG), in terms of vec a and vec b, is

If vec(OA)=vecavec(OC)=vecb and area of DeltaOAC is S and a parallelogram with sides parallel to vec(OA) and vec(OC) and diagonal vec(OB)=12veca+4vecb , has area equal to B, then is equal to_________

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=

if | vec a | = | vec b | = | vec a + vec b | = 1 then | vec a-vec b |

Let ABCD be a parallelogram whose diagonals intersect at P and let O be the origin. What is vec(OA) + vec(OB) + vec(OC ) + vec(OD) equal to

If | vec AO + vec OB | = | vec BO + vec OC |, then A, B, C form

if | vec a | = | vec b | then find [(vec a + vec b) * (vec a-vec b)]

OBJECTIVE RD SHARMA-ALGEBRA OF VECTORS-Chapter Test
  1. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  2. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  3. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  4. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  5. In a Delta ABC, if vec(AB) = 3 hati + 4 hatk, vec(AC) = 5 hati + 2 hat...

    Text Solution

    |

  6. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  7. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  8. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  9. If OACB is a parallelogramwith vec(OC) = vec a and vec (AB) = vec b...

    Text Solution

    |

  10. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |

  11. If ABCDEF is a regular hexagon then vec(AD)+vec(EB)+vec(FC) equals :

    Text Solution

    |

  12. If the points with position vectors 20 hati + p hatj , 5 hati - hat...

    Text Solution

    |

  13. If the position vector of a point A is vec a + 2 vec b and vec a divi...

    Text Solution

    |

  14. If vec a ,\ vec b ,\ vec c and vec d are the position vectors of p...

    Text Solution

    |

  15. Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = v...

    Text Solution

    |

  16. If G is the intersection of diagonals of a parallelogram ABCD and O is...

    Text Solution

    |

  17. The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin a...

    Text Solution

    |

  18. In a regular hexagon ABCDEF, vecAB=a, vecBC=b and vecCD = c. Then, vec...

    Text Solution

    |

  19. If three points A, B and C have position vectors hati + x hatj + 3 ha...

    Text Solution

    |

  20. If the position vectors of the vertices of a triangle of a triangle ar...

    Text Solution

    |