Home
Class 12
MATHS
Let G be the centroid of Delta ABC , If...

Let G be the centroid of `Delta` ABC , If `vec(AB) = vec a , vec(AC) = vec b,` then the `vec(AG),` in terms of `vec a and vec b, ` is

A

`(2)/(3) ( vec a + vec b)`

B

`(1)/(6) ( vec a + vec b)`

C

`(1)/(3) ( vec a + vec b)`

D

`(1)/(2) ( vec a + vec b)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector \( \vec{AG} \) in terms of \( \vec{a} \) and \( \vec{b} \), we will follow these steps: ### Step 1: Understand the Position Vectors Let the position vector of point \( A \) be \( \vec{A} = \vec{0} \) (the origin). Then, we can express the position vectors of points \( B \) and \( C \) as: - \( \vec{B} = \vec{A} + \vec{AB} = \vec{0} + \vec{a} = \vec{a} \) - \( \vec{C} = \vec{A} + \vec{AC} = \vec{0} + \vec{b} = \vec{b} \) ### Step 2: Find the Centroid \( G \) The centroid \( G \) of triangle \( ABC \) is given by the formula: \[ \vec{G} = \frac{\vec{A} + \vec{B} + \vec{C}}{3} \] Substituting the position vectors we have: \[ \vec{G} = \frac{\vec{0} + \vec{a} + \vec{b}}{3} = \frac{\vec{a} + \vec{b}}{3} \] ### Step 3: Find the Vector \( \vec{AG} \) The vector \( \vec{AG} \) can be calculated as: \[ \vec{AG} = \vec{G} - \vec{A} \] Since \( \vec{A} = \vec{0} \), we have: \[ \vec{AG} = \vec{G} - \vec{0} = \vec{G} = \frac{\vec{a} + \vec{b}}{3} \] ### Final Result Thus, the vector \( \vec{AG} \) in terms of \( \vec{a} \) and \( \vec{b} \) is: \[ \vec{AG} = \frac{\vec{a} + \vec{b}}{3} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

Let G be the centroid of ABC .If vec AB=vec a,vec AC=vec b ,then the bisector vec AG, in terms of vec a and vec b is (2)/(3)(vec a+vec b) b.(1)/(6)(vec a+vec b) c.(1)/(3)(vec a+vec b) d.(1)/(2)(vec a+vec b)1

If G is the centroid of a triangle ABC, prove that vec GA+vec GB+vec GC=vec 0

If G denotes the centroid of Delta ABC, then write the value o vec GA+vec GB+vec GC

Let vec(A)D be the angle bisector of angle A" of " Delta ABC such that vec(A)D=alpha vec(A)B+beta vec(A)C, then

(vec a-vec b) * (vec a + vec b) = 27 and | vec a | = 2 | vec b | find | vec a | and | vec b |

If G is the centroid of Delta ABC and G' is the centroid of Delta A' B' C' " then " vec(A A)' + vec(B B)' + vec(C C)' =

In a triangle ABC, if |vec(BC)|=8, |vec(CA)|=7, |vec(AB)|=10 , then the projection of the vec(AB) on vec(AC) is equal to :

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

Four vectors vec a,vec b,vec c and vec x satisfy the relation (vec a*vec x)vec b=vec c+vec x where vec b*vec a!=1 The value of vec x in terms of vec a,vec b and vec c is equal to

In a triangle OAC, if B is the mid point of side AC and vec O A= vec a , vec O B= vec b , then what is vec O C ?

OBJECTIVE RD SHARMA-ALGEBRA OF VECTORS-Chapter Test
  1. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  2. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  3. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  4. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  5. In a Delta ABC, if vec(AB) = 3 hati + 4 hatk, vec(AC) = 5 hati + 2 hat...

    Text Solution

    |

  6. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  7. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  8. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  9. If OACB is a parallelogramwith vec(OC) = vec a and vec (AB) = vec b...

    Text Solution

    |

  10. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |

  11. If ABCDEF is a regular hexagon then vec(AD)+vec(EB)+vec(FC) equals :

    Text Solution

    |

  12. If the points with position vectors 20 hati + p hatj , 5 hati - hat...

    Text Solution

    |

  13. If the position vector of a point A is vec a + 2 vec b and vec a divi...

    Text Solution

    |

  14. If vec a ,\ vec b ,\ vec c and vec d are the position vectors of p...

    Text Solution

    |

  15. Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = v...

    Text Solution

    |

  16. If G is the intersection of diagonals of a parallelogram ABCD and O is...

    Text Solution

    |

  17. The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin a...

    Text Solution

    |

  18. In a regular hexagon ABCDEF, vecAB=a, vecBC=b and vecCD = c. Then, vec...

    Text Solution

    |

  19. If three points A, B and C have position vectors hati + x hatj + 3 ha...

    Text Solution

    |

  20. If the position vectors of the vertices of a triangle of a triangle ar...

    Text Solution

    |