Home
Class 12
MATHS
If G is the intersection of diagonals of...

If G is the intersection of diagonals of a parallelogram ABCD and O is any point, then ` O vecA + O vec B + O vec C + vec (OD) = `

A

`2vec(OG)`

B

`4vec(OG)`

C

`5vec(OG)`

D

`3vec(OG)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \( O \vec{A} + O \vec{B} + O \vec{C} + O \vec{D} \) where \( G \) is the intersection of the diagonals of the parallelogram \( ABCD \) and \( O \) is any point. ### Step-by-Step Solution: 1. **Define the Position Vectors**: Let the position vectors of points \( A, B, C, \) and \( D \) be represented as: - \( \vec{A} \) for point \( A \) - \( \vec{B} \) for point \( B \) - \( \vec{C} \) for point \( C \) - \( \vec{D} \) for point \( D \) 2. **Express Vectors with Reference Point \( O \)**: The vectors from point \( O \) to points \( A, B, C, \) and \( D \) can be expressed as: - \( \vec{OA} = \vec{A} - \vec{O} \) - \( \vec{OB} = \vec{B} - \vec{O} \) - \( \vec{OC} = \vec{C} - \vec{O} \) - \( \vec{OD} = \vec{D} - \vec{O} \) 3. **Sum the Vectors**: Now, we can sum these vectors: \[ \vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} = (\vec{A} - \vec{O}) + (\vec{B} - \vec{O}) + (\vec{C} - \vec{O}) + (\vec{D} - \vec{O}) \] Simplifying this gives: \[ = (\vec{A} + \vec{B} + \vec{C} + \vec{D}) - 4\vec{O} \] 4. **Finding the Midpoint \( G \)**: Since \( G \) is the intersection of the diagonals of the parallelogram, we know that: \[ \vec{G} = \frac{\vec{A} + \vec{C}}{2} = \frac{\vec{B} + \vec{D}}{2} \] 5. **Substituting \( G \) in the Expression**: We can express \( \vec{A} + \vec{B} + \vec{C} + \vec{D} \) in terms of \( \vec{G} \): \[ \vec{A} + \vec{B} + \vec{C} + \vec{D} = 2\vec{G} + 2\vec{G} = 4\vec{G} \] 6. **Final Expression**: Thus, substituting back into our earlier expression: \[ \vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} = 4\vec{G} - 4\vec{O} \] Therefore, we can conclude: \[ O \vec{A} + O \vec{B} + O \vec{C} + O \vec{D} = 4\vec{G} - 4\vec{O} \] ### Conclusion: The final expression is \( O \vec{A} + O \vec{B} + O \vec{C} + O \vec{D} = 4\vec{G} - 4\vec{O} \).
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

If G si the intersectioinof diagonals of a parallelogram ABCD and O is any point then Ovec A+Ovec B+Ovec C+Ovec D=2vec OG b.4vec OG c.5vec OG d.3vec OG

If E is the intersection point of diagonals of parallelogram ABCD and vec( OA) + vec (OB) + vec (OC) + vec (OD) = xvec (OE) where O is origin then x=

ABCD is a parallelogram with AC and BD as diagonals. Then, A vec C - B vec D =

If ABCD is a parallelogram, then vec(AC) - vec(BD) =

O is any point on the diagonal B D of the parallelogram A B C Ddot Prove that a r( O A B)=a r( O B C)

The diagonals of a parallelogram ABCD intersect at O.A line through O intersects AB at X and DC at Y. Prove that OX=OY

ABCD is parallelogram and P is the point of intersection of its diagonals.If O is the origin of reference,show that vec OA+vec OB+vec OC+vec OD=4vec OP

Let ABCD is a parallelogram and vec AC,vec BD be its diagonal,then vec AC+vec BD is

ABDC is a parallelogram and P is the point of intersection of its diagonals. If O is any point, then overline(OA)+overline(OB)+overline(OC)+overline(OD)=

ABCD is a quadrilateral.E is the point of intersection of the line joining the midpoints of the opposite sides.If O is any point and vec OA+vec OB+vec OC+vec OD=xvec OE, then x is equal to a.3 b.9 c.7 d.4

OBJECTIVE RD SHARMA-ALGEBRA OF VECTORS-Chapter Test
  1. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  2. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  3. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  4. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  5. In a Delta ABC, if vec(AB) = 3 hati + 4 hatk, vec(AC) = 5 hati + 2 hat...

    Text Solution

    |

  6. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  7. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  8. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  9. If OACB is a parallelogramwith vec(OC) = vec a and vec (AB) = vec b...

    Text Solution

    |

  10. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |

  11. If ABCDEF is a regular hexagon then vec(AD)+vec(EB)+vec(FC) equals :

    Text Solution

    |

  12. If the points with position vectors 20 hati + p hatj , 5 hati - hat...

    Text Solution

    |

  13. If the position vector of a point A is vec a + 2 vec b and vec a divi...

    Text Solution

    |

  14. If vec a ,\ vec b ,\ vec c and vec d are the position vectors of p...

    Text Solution

    |

  15. Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = v...

    Text Solution

    |

  16. If G is the intersection of diagonals of a parallelogram ABCD and O is...

    Text Solution

    |

  17. The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin a...

    Text Solution

    |

  18. In a regular hexagon ABCDEF, vecAB=a, vecBC=b and vecCD = c. Then, vec...

    Text Solution

    |

  19. If three points A, B and C have position vectors hati + x hatj + 3 ha...

    Text Solution

    |

  20. If the position vectors of the vertices of a triangle of a triangle ar...

    Text Solution

    |