Home
Class 12
MATHS
The maximum and minimum values of -4l...

The maximum and minimum values of
`-4le5cos theta+3cos(theta+(pi)/(3))+3le10` are respectively

A

`and -4`

B

`10 and -4`

C

`10 and -10`

D

`6and -4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the maximum and minimum values of the expression: \[ -4 \leq 5 \cos \theta + 3 \cos\left(\theta + \frac{\pi}{3}\right) + 3 \leq 10 \] we can break it down step by step. ### Step 1: Rewrite the expression We need to express \(3 \cos\left(\theta + \frac{\pi}{3}\right)\) using the cosine addition formula: \[ \cos\left(\theta + \frac{\pi}{3}\right) = \cos \theta \cos \frac{\pi}{3} - \sin \theta \sin \frac{\pi}{3} \] Substituting the values of \(\cos \frac{\pi}{3} = \frac{1}{2}\) and \(\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}\): \[ 3 \cos\left(\theta + \frac{\pi}{3}\right) = 3\left(\cos \theta \cdot \frac{1}{2} - \sin \theta \cdot \frac{\sqrt{3}}{2}\right) = \frac{3}{2} \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta \] ### Step 2: Combine the terms Now, substituting this back into the original expression: \[ 5 \cos \theta + 3 \cos\left(\theta + \frac{\pi}{3}\right) = 5 \cos \theta + \frac{3}{2} \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta \] Combining the cosine terms: \[ = \left(5 + \frac{3}{2}\right) \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta = \frac{13}{2} \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta \] ### Step 3: Identify the maximum and minimum values The expression can be treated as \(A \cos \theta + B \sin \theta\) where: - \(A = \frac{13}{2}\) - \(B = -\frac{3\sqrt{3}}{2}\) The maximum and minimum values of \(A \cos \theta + B \sin \theta\) can be found using the formula: \[ \sqrt{A^2 + B^2} \] Calculating \(A^2 + B^2\): \[ A^2 = \left(\frac{13}{2}\right)^2 = \frac{169}{4} \] \[ B^2 = \left(-\frac{3\sqrt{3}}{2}\right)^2 = \frac{27}{4} \] Adding these: \[ A^2 + B^2 = \frac{169}{4} + \frac{27}{4} = \frac{196}{4} = 49 \] Thus: \[ \sqrt{A^2 + B^2} = \sqrt{49} = 7 \] ### Step 4: Determine the maximum and minimum values The maximum value of \(5 \cos \theta + 3 \cos\left(\theta + \frac{\pi}{3}\right)\) is \(7\) and the minimum value is \(-7\). ### Step 5: Adjust for the inequality Now, considering the original inequality: \[ -4 \leq 5 \cos \theta + 3 \cos\left(\theta + \frac{\pi}{3}\right) + 3 \leq 10 \] Adding \(3\) to the maximum and minimum values: - Maximum: \(7 + 3 = 10\) - Minimum: \(-7 + 3 = -4\) Thus, the maximum and minimum values of the expression \(5 \cos \theta + 3 \cos\left(\theta + \frac{\pi}{3}\right) + 3\) are: - Maximum value: \(10\) - Minimum value: \(-4\) ### Final Answer: The maximum and minimum values are respectively \(10\) and \(-4\). ---

To solve the problem of finding the maximum and minimum values of the expression: \[ -4 \leq 5 \cos \theta + 3 \cos\left(\theta + \frac{\pi}{3}\right) + 3 \leq 10 \] we can break it down step by step. ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|106 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

5cos theta+3cos(theta-(pi)/(3))+8=

Find maximum and minimum value of 5cos theta+3sin(theta+(pi)/(6))

The maximum value of 5costheta+3cos(theta+pi/3)+3 is:

The maximum values of 4sin theta+3cos theta is

Find the maximum and minimum values of the expression: 3cos theta+5sin(theta-(pi)/(6))

The maximum and minimum values of expression (4-2cos theta) respectively are

Find maximum and minimum values of 2sin(theta+(pi)/(6))+sqrt(3)cos(theta-(pi)/(6))

The minimum value of (1)/(3sin theta-4cos theta+7) is

OBJECTIVE RD SHARMA-TRIGONOMETRIC RATIOS AND IDENTITIES-Chapter Test
  1. The maximum and minimum values of -4le5cos theta+3cos(theta+(pi)/(3...

    Text Solution

    |

  2. If cos alpha+cos beta=0=sin alpha+sinbeta, then cos2alpha+cos 2beta=

    Text Solution

    |

  3. If sin beta is the GM between sin alpha and cos alpha, then cos 2beta...

    Text Solution

    |

  4. tan""(2pi)/(5)-tan""(pi)/(15)-sqrt3tan""(2pi)/(5)tan""(pi)/(15) is equ...

    Text Solution

    |

  5. If sinB=1/5sin(2A+B), then (tan(A+B))/(tanA) is equal to

    Text Solution

    |

  6. (sin7theta+6sin5theta+17sin3theta+12sintheta)/(sin6theta+5sin4theta+12...

    Text Solution

    |

  7. If (cos(theta(1)-theta(2)))/(cos(theta(1)+theta(2)))+(cos(theta(3)+the...

    Text Solution

    |

  8. (1+cos56^(@)+cos58^(@) -cos66^(@))/(cos28^(@)cos29^@sin33^(@)) =

    Text Solution

    |

  9. alpha and beta are acute angles and cos2alpha = (3cos2beta-1)/(3-cos2b...

    Text Solution

    |

  10. If cosectheta=(p+q)/(p-q),then cot(pi,//4+theta//2)=

    Text Solution

    |

  11. If sinalpha+sin beta=a and cos alpha+cos beta=b,then sin(alpha+beta)=

    Text Solution

    |

  12. If cos(alpha+beta)=4/5, sin(alpha-beta)=5/13and alpha, beta between 0 ...

    Text Solution

    |

  13. The vlaue of cos^(2)76^(@)+cos^(2)16-cos76^(@)cos16^(@),is

    Text Solution

    |

  14. The value of sum(k=1)^(3) cos^(2)(2k-1)(pi)/(12), is

    Text Solution

    |

  15. If (a^(2)+1)/(2a)=costheta, then (a^(6)+1)/(2a^(3))=

    Text Solution

    |

  16. The value of (1)/(cos290^(@))+(1)/(sqrt3sin250^(@)) is equal to

    Text Solution

    |

  17. If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+bet...

    Text Solution

    |

  18. A and B are positive acute angles satisfying the equations 3cos^(2)A...

    Text Solution

    |

  19. If T(n)=cos^(n)theta+sin ^(n)theta, then 2T(6)-3T(4)+1=

    Text Solution

    |

  20. The maximum value of 1+8sin^(2)x^(2)cos^(2)x^(2) is

    Text Solution

    |

  21. Let thetain(0,pi//4)and t(1)=(tantheta)^(tantheta), t(2)=(tantheta)^(...

    Text Solution

    |