Home
Class 12
MATHS
The set of all poddible ualuse of alpha ...

The set of all poddible ualuse of `alpha` in `[-pi,pi]` such that `sqrt((1-sinalpha)/(a+sinalpha))` is equal to sec `alpha-tanalpha,` is

A

`[0,pi//2)`

B

`[0,pi//2)uu(pi//2,pi)`

C

`[-pi,0]`

D

`(-pi//2,pi//2)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{\frac{1 - \sin \alpha}{1 + \sin \alpha}} = \sec \alpha - \tan \alpha \), we will follow these steps: ### Step 1: Simplify the left-hand side We start with the left-hand side: \[ \sqrt{\frac{1 - \sin \alpha}{1 + \sin \alpha}} \] ### Step 2: Rationalize the expression To simplify, we can multiply the numerator and denominator by \( 1 - \sin \alpha \): \[ \sqrt{\frac{(1 - \sin \alpha)(1 - \sin \alpha)}{(1 + \sin \alpha)(1 - \sin \alpha)}} \] This gives us: \[ \sqrt{\frac{(1 - \sin \alpha)^2}{1 - \sin^2 \alpha}} = \sqrt{\frac{(1 - \sin \alpha)^2}{\cos^2 \alpha}} \] Thus, we can simplify it to: \[ \frac{1 - \sin \alpha}{\cos \alpha} \] ### Step 3: Write the right-hand side Now, we rewrite the right-hand side: \[ \sec \alpha - \tan \alpha = \frac{1}{\cos \alpha} - \frac{\sin \alpha}{\cos \alpha} = \frac{1 - \sin \alpha}{\cos \alpha} \] ### Step 4: Set the two sides equal Now we have: \[ \frac{1 - \sin \alpha}{\cos \alpha} = \frac{1 - \sin \alpha}{\cos \alpha} \] This equation holds true for all values of \( \alpha \) where \( \cos \alpha \neq 0 \) and \( 1 - \sin \alpha \neq 0 \). ### Step 5: Determine the restrictions 1. \( \cos \alpha \neq 0 \) implies \( \alpha \neq \frac{\pi}{2} + k\pi \) for any integer \( k \). 2. \( 1 - \sin \alpha \neq 0 \) implies \( \sin \alpha \neq 1 \) which gives \( \alpha \neq \frac{\pi}{2} \). ### Step 6: Find the solution set The possible values of \( \alpha \) in the interval \( [-\pi, \pi] \) excluding \( \frac{\pi}{2} \) are: \[ [-\pi, -\frac{\pi}{2}) \cup (-\frac{\pi}{2}, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi] \] ### Final Answer Thus, the set of all possible values of \( \alpha \) in \( [-\pi, \pi] \) such that the equation holds is: \[ [-\pi, -\frac{\pi}{2}) \cup (-\frac{\pi}{2}, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi] \]

To solve the equation \( \sqrt{\frac{1 - \sin \alpha}{1 + \sin \alpha}} = \sec \alpha - \tan \alpha \), we will follow these steps: ### Step 1: Simplify the left-hand side We start with the left-hand side: \[ \sqrt{\frac{1 - \sin \alpha}{1 + \sin \alpha}} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Exercise|190 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If alpha in [(pi)/(2),pi] then the value of sqrt(1+ sin alpha)-sqrt(1 - sin alpha) is equal to

(1-cos alpha)/(sinalpha)=tan(alpha/2)

If pi/2

Prove that (1-cosalpha)/sinalpha=tan(alpha/2)

If (pi)/(2)lt alpha lt (3pi)/(4) , then sqrt(2tan alpha+(1)/(cos^(2)alpha)) is equal to

If (3 pi)/(4)

sinalpha=(1)/(2) cos beta=(1)/(2) then alpha+beta=

(a+2)sinalpha(2a-1)cosalpha=(2a+1)if tanalpha is

If (2sinalpha)/(1+cosalpha +sinalpha)=y , then prove that (1-cosalpha+sinalpha )/(1+sinalpha) is also equal to y.

Prove that (sinalpha+cosalpha)(tanalpha+cotalpha)=secalpha+"cosec"alpha

OBJECTIVE RD SHARMA-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. If (pi)/(2)lt thetalt(3pi)/(2),then sqrt((1-sintheta)/(1+sintheta))"is...

    Text Solution

    |

  2. If 0lt thetalt(pi)/(2')and if(y+1)/(1-y)=sqrt((1+sintheta)/(1-sintheta...

    Text Solution

    |

  3. The set of all poddible ualuse of alpha in [-pi,pi] such that sqrt((1...

    Text Solution

    |

  4. If |tanA|lt1and |A|is acute, then (sqrt(1+sin2A)+sqrt(1-sin2A))/(sqrt...

    Text Solution

    |

  5. sec^(2)theta==(4ab)/((a+b)^(2)), where a, b inR is true if and olny if

    Text Solution

    |

  6. Which one is true ?

    Text Solution

    |

  7. If 10sin^4 alpha+15 cos^4 alpha=6, then find the value of 27 cosec^6 a...

    Text Solution

    |

  8. Let cos (alpha+beta) = 4/5 and sin(alpha-beta)=5/13 where 0<= alpha,...

    Text Solution

    |

  9. If a=sinxcos^3x and b=cosxsin^3x then

    Text Solution

    |

  10. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as

    Text Solution

    |

  11. Let P={theta:sintheta-costheta=sqrt2cos theta}and Q={theta:sintheta+c...

    Text Solution

    |

  12. If xcosalpha+ysinalpha=xcosbeta+ysinbeta=2a, then cosalpha cosbeta=

    Text Solution

    |

  13. If sin theta+cosec theta=2, "then the volume of" sin ^(10)theta+cosec...

    Text Solution

    |

  14. The value of sin^(8)theta+cos^(8)theta+sin^(6)theta cos^(2)theta+3sin^...

    Text Solution

    |

  15. Let fk(x) = 1/k(sin^k x + cos^k x) where x in RR and k gt= 1. Then f4(...

    Text Solution

    |

  16. If sin(theta+alpha)=a,cos^(2)(alpha+beta)=b, then sin(alpha-beta)=

    Text Solution

    |

  17. Len n be an odd integer. If sinn theta=sum(r=0)^(n) b(r)sin^(r)theta f...

    Text Solution

    |

  18. Which one of the following number (s) is/are rational?

    Text Solution

    |

  19. Let (3pi)/4 < theta < pi and sqrt(2 cot theta+1/sin^2 theta) = k - cot...

    Text Solution

    |

  20. The values of sum(k=1)^(13) (1)/(sin((pi)/(4)+(k-1)(pi)/(6))sin((pi)/(...

    Text Solution

    |