Home
Class 12
MATHS
The value of sin^(8)theta+cos^(8)theta+s...

The value of `sin^(8)theta+cos^(8)theta+sin^(6)theta cos^(2)theta+3sin^(4)theta cos^(2)theta+cos^(6)theta sin^(2)theta+3sin^(2)thetacos^(4)theta` is equal to

A

`cos^(2)2 theta`

B

`sin^(2)2theta`

C

`cos^(3)2 theta+sin^(3)2theta`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^8 \theta + \cos^8 \theta + \sin^6 \theta \cos^2 \theta + 3\sin^4 \theta \cos^2 \theta + \cos^6 \theta \sin^2 \theta + 3\sin^2 \theta \cos^4 \theta \), we can simplify it step by step. ### Step 1: Grouping Terms We can group the terms in the expression in a way that makes it easier to factor: \[ \sin^8 \theta + \cos^8 \theta + (\sin^6 \theta \cos^2 \theta + \cos^6 \theta \sin^2 \theta) + 3(\sin^4 \theta \cos^2 \theta + \sin^2 \theta \cos^4 \theta) \] ### Step 2: Using the Identity Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can rewrite \( \sin^8 \theta + \cos^8 \theta \) using the formula for the sum of cubes: \[ \sin^8 \theta + \cos^8 \theta = (\sin^4 \theta + \cos^4 \theta)(\sin^4 \theta - \cos^4 \theta) \] However, we can also directly compute \( \sin^8 \theta + \cos^8 \theta \) using another identity: \[ \sin^8 \theta + \cos^8 \theta = (\sin^2 \theta + \cos^2 \theta)^4 - 4\sin^2 \theta \cos^2 \theta(\sin^2 \theta + \cos^2 \theta)^2 \] This simplifies to: \[ 1 - 4\sin^2 \theta \cos^2 \theta \] ### Step 3: Simplifying the Remaining Terms Next, we simplify the remaining terms: \[ \sin^6 \theta \cos^2 \theta + \cos^6 \theta \sin^2 \theta = \sin^2 \theta \cos^2 \theta (\sin^4 \theta + \cos^4 \theta) \] And we know: \[ \sin^4 \theta + \cos^4 \theta = (\sin^2 \theta + \cos^2 \theta)^2 - 2\sin^2 \theta \cos^2 \theta = 1 - 2\sin^2 \theta \cos^2 \theta \] Thus, \[ \sin^6 \theta \cos^2 \theta + \cos^6 \theta \sin^2 \theta = \sin^2 \theta \cos^2 \theta (1 - 2\sin^2 \theta \cos^2 \theta) \] ### Step 4: Combine Everything Now we can combine all parts: \[ 1 - 4\sin^2 \theta \cos^2 \theta + 3(\sin^4 \theta \cos^2 \theta + \sin^2 \theta \cos^4 \theta) \] Using the identity again: \[ \sin^4 \theta \cos^2 \theta + \sin^2 \theta \cos^4 \theta = \sin^2 \theta \cos^2 \theta (\sin^2 \theta + \cos^2 \theta) = \sin^2 \theta \cos^2 \theta \] Thus, \[ 3(\sin^4 \theta \cos^2 \theta + \sin^2 \theta \cos^4 \theta) = 3\sin^2 \theta \cos^2 \theta \] ### Final Expression Putting it all together: \[ 1 - 4\sin^2 \theta \cos^2 \theta + 3\sin^2 \theta \cos^2 \theta = 1 - \sin^2 \theta \cos^2 \theta \] Since \( \sin^2 \theta + \cos^2 \theta = 1 \), we can conclude: \[ \text{Final Value} = 1 \]

To solve the expression \( \sin^8 \theta + \cos^8 \theta + \sin^6 \theta \cos^2 \theta + 3\sin^4 \theta \cos^2 \theta + \cos^6 \theta \sin^2 \theta + 3\sin^2 \theta \cos^4 \theta \), we can simplify it step by step. ### Step 1: Grouping Terms We can group the terms in the expression in a way that makes it easier to factor: \[ \sin^8 \theta + \cos^8 \theta + (\sin^6 \theta \cos^2 \theta + \cos^6 \theta \sin^2 \theta) + 3(\sin^4 \theta \cos^2 \theta + \sin^2 \theta \cos^4 \theta) \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Exercise|190 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1

Prove that sin^(6)theta+cos^(6)theta=1-3sin^(2)theta cos^(2)theta

What is sin^(6)theta+cos^(6)theta+2sin^(2)thetacos^(2)theta equal to ?

4(sin^(6)theta+cos^(6)theta)-6(sin^(4)theta+cos^(4)theta) is equal to

Prove that sin^(6)theta+cos^(6)theta=1-3sin^(2)theta.cos^(2)theta.

Find the value of 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)-(sin^(2)theta+cos^(2)theta)^(2)

The value of (2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta))/(cos^(4)theta-sin^(4)theta-2cos^(2)theta) is :

The value of 8(sin^(6)theta+cos^(6)theta)-12(sin^(4)theta+cos^(4)theta) is equal to

The value for 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1 is

OBJECTIVE RD SHARMA-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. If xcosalpha+ysinalpha=xcosbeta+ysinbeta=2a, then cosalpha cosbeta=

    Text Solution

    |

  2. If sin theta+cosec theta=2, "then the volume of" sin ^(10)theta+cosec...

    Text Solution

    |

  3. The value of sin^(8)theta+cos^(8)theta+sin^(6)theta cos^(2)theta+3sin^...

    Text Solution

    |

  4. Let fk(x) = 1/k(sin^k x + cos^k x) where x in RR and k gt= 1. Then f4(...

    Text Solution

    |

  5. If sin(theta+alpha)=a,cos^(2)(alpha+beta)=b, then sin(alpha-beta)=

    Text Solution

    |

  6. Len n be an odd integer. If sinn theta=sum(r=0)^(n) b(r)sin^(r)theta f...

    Text Solution

    |

  7. Which one of the following number (s) is/are rational?

    Text Solution

    |

  8. Let (3pi)/4 < theta < pi and sqrt(2 cot theta+1/sin^2 theta) = k - cot...

    Text Solution

    |

  9. The values of sum(k=1)^(13) (1)/(sin((pi)/(4)+(k-1)(pi)/(6))sin((pi)/(...

    Text Solution

    |

  10. If A > 0, B > 0 and A+B=pi/6, then the minimum value of tan A + tan B ...

    Text Solution

    |

  11. For a positive integer n , fn(theta)=(tantheta/2)(1+sectheta)(1+sec2th...

    Text Solution

    |

  12. Let f(theta)=sintheta(sintheta+sin3theta).Then, f(theta)

    Text Solution

    |

  13. If alpha+beta=pi/2 and beta+gamma=alpha then tanalpha equals

    Text Solution

    |

  14. If 5(tan^2x - cos^2x)=2cos 2x + 9, then the value of cos4x is

    Text Solution

    |

  15. If alpha and beta are non-zero real number such that 2(cos beta-cos al...

    Text Solution

    |

  16. The maximum value of (cosalpha(1))(cosalpha(2))...(cosalpha(n)), under...

    Text Solution

    |

  17. The value of tan (pi/16)+2tan(pi/8)+4 is equal to

    Text Solution

    |

  18. If sin A=a cos B and cosA=b sinB then, (a^2 - 1) tan^2 A+(1 -b^2)ta...

    Text Solution

    |

  19. If cos^(3)x sin2x=sum(n=1)^(n) a(m)sinmx is an identity in x, then whi...

    Text Solution

    |

  20. If cos^4 theta sec^2 alpha,1/2 and sin^4 theta cosec^2 alpha are in ...

    Text Solution

    |