Home
Class 12
MATHS
If x sintheta=ysin(theta+(2pi)/(3))=z si...

If `x sintheta=ysin(theta+(2pi)/(3))=z sin(theta+(4pi)/(3)),` then

A

`x+y+z=0`

B

`xy+yz+zx=0`

C

`xyz+x+y+z=1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x \sin \theta = y \sin\left(\theta + \frac{2\pi}{3}\right) = z \sin\left(\theta + \frac{4\pi}{3}\right) \), we will break it down step by step. ### Step 1: Express \( y \sin\left(\theta + \frac{2\pi}{3}\right) \) Using the sine addition formula, we have: \[ \sin(a + b) = \sin a \cos b + \cos a \sin b \] For \( y \sin\left(\theta + \frac{2\pi}{3}\right) \): \[ y \sin\left(\theta + \frac{2\pi}{3}\right) = y \left(\sin \theta \cos\left(\frac{2\pi}{3}\right) + \cos \theta \sin\left(\frac{2\pi}{3}\right)\right) \] We know that: \[ \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}, \quad \sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \] Thus, \[ y \sin\left(\theta + \frac{2\pi}{3}\right) = y \left(\sin \theta \left(-\frac{1}{2}\right) + \cos \theta \left(\frac{\sqrt{3}}{2}\right)\right) \] This simplifies to: \[ y \sin\left(\theta + \frac{2\pi}{3}\right) = -\frac{y}{2} \sin \theta + \frac{y \sqrt{3}}{2} \cos \theta \] ### Step 2: Set up the equation with \( x \) Now, equate \( x \sin \theta \) to \( y \sin\left(\theta + \frac{2\pi}{3}\right) \): \[ x \sin \theta = -\frac{y}{2} \sin \theta + \frac{y \sqrt{3}}{2} \cos \theta \] Rearranging gives: \[ x \sin \theta + \frac{y}{2} \sin \theta = \frac{y \sqrt{3}}{2} \cos \theta \] Factoring out \( \sin \theta \): \[ \left(x + \frac{y}{2}\right) \sin \theta = \frac{y \sqrt{3}}{2} \cos \theta \] Dividing both sides by \( \sin \theta \) (assuming \( \sin \theta \neq 0 \)): \[ x + \frac{y}{2} = \frac{y \sqrt{3}}{2} \frac{\cos \theta}{\sin \theta} \] Thus, \[ \frac{x}{y} = -\frac{1}{2} + \frac{\sqrt{3}}{2} \cot \theta \tag{1} \] ### Step 3: Express \( z \sin\left(\theta + \frac{4\pi}{3}\right) \) Using the sine addition formula again for \( z \sin\left(\theta + \frac{4\pi}{3}\right) \): \[ z \sin\left(\theta + \frac{4\pi}{3}\right) = z \left(\sin \theta \cos\left(\frac{4\pi}{3}\right) + \cos \theta \sin\left(\frac{4\pi}{3}\right)\right) \] With: \[ \cos\left(\frac{4\pi}{3}\right) = -\frac{1}{2}, \quad \sin\left(\frac{4\pi}{3}\right) = -\frac{\sqrt{3}}{2} \] We get: \[ z \sin\left(\theta + \frac{4\pi}{3}\right) = z \left(\sin \theta \left(-\frac{1}{2}\right) + \cos \theta \left(-\frac{\sqrt{3}}{2}\right)\right) \] This simplifies to: \[ z \sin\left(\theta + \frac{4\pi}{3}\right) = -\frac{z}{2} \sin \theta - \frac{z \sqrt{3}}{2} \cos \theta \] ### Step 4: Set up the equation with \( x \) Equate \( x \sin \theta \) to \( z \sin\left(\theta + \frac{4\pi}{3}\right) \): \[ x \sin \theta = -\frac{z}{2} \sin \theta - \frac{z \sqrt{3}}{2} \cos \theta \] Rearranging gives: \[ x \sin \theta + \frac{z}{2} \sin \theta = -\frac{z \sqrt{3}}{2} \cos \theta \] Factoring out \( \sin \theta \): \[ \left(x + \frac{z}{2}\right) \sin \theta = -\frac{z \sqrt{3}}{2} \cos \theta \] Dividing both sides by \( \sin \theta \): \[ x + \frac{z}{2} = -\frac{z \sqrt{3}}{2} \frac{\cos \theta}{\sin \theta} \] Thus, \[ \frac{x}{z} = -\frac{1}{2} - \frac{\sqrt{3}}{2} \cot \theta \tag{2} \] ### Step 5: Combine equations (1) and (2) Now we add equations (1) and (2): \[ \frac{x}{y} + \frac{x}{z} = \left(-\frac{1}{2} + \frac{\sqrt{3}}{2} \cot \theta\right) + \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} \cot \theta\right) \] This simplifies to: \[ \frac{x}{y} + \frac{x}{z} = -1 \] Multiplying through by \( yz \): \[ xz + xy = -yz \] Rearranging gives: \[ xy + yz + zx = 0 \] ### Final Result Thus, the final result is: \[ xy + yz + zx = 0 \]

To solve the equation \( x \sin \theta = y \sin\left(\theta + \frac{2\pi}{3}\right) = z \sin\left(\theta + \frac{4\pi}{3}\right) \), we will break it down step by step. ### Step 1: Express \( y \sin\left(\theta + \frac{2\pi}{3}\right) \) Using the sine addition formula, we have: \[ \sin(a + b) = \sin a \cos b + \cos a \sin b \] For \( y \sin\left(\theta + \frac{2\pi}{3}\right) \): ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Exercise|190 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If xcostheta=ycos(theta+(2pi)/(3))=zcos(theta+(4pi)/(3)) , then (1)/(x)+(1)/(y)+(1)/(z)=?

If x cos theta=y cos(theta+(2 pi)/(3))=z cos(theta+(4 pi)/(3)), prove that xy+yz+zx=0

If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a sinb theta . Find the value of |(b)/(a)| .

Prove that: 4sin theta sin(theta+(pi)/(3))sin(theta+(2 pi)/(3))=sin3 theta

The value of the determinant |sin theta,cos theta,sin2 thetasin(theta+(2 pi)/(3)),cos(theta+(2 pi)/(3)),sin(2 theta+(4 pi)/(3))sin(theta-(2 pi)/(3)),cos(theta-(2 pi)/(3)),sin(2 theta-(4 pi)/(3))

If f( theta ) = sin ^(3)theta + sin ^(3)( theta + (2pi)/(3)) + sin ^(3)( theta + (4pi)/(3)) then the value of f((pi)/(18)) + f((7pi)/(18)) is ___________.

If 2 sin(theta+(pi)/(3))=cos(theta-(pi)/(6)) , then tantheta =

Prove that all values of theta: |(sintheta, costheta, sin2theta),(sin(theta+(2pi)/3), cos(theta+(2pi)/3), sin (2theta+(4pi)/3)),(sin (theta- (2pi)/3), cos (theta- (2pi)/3), sin (2theta- (4pi)/3))|=0

OBJECTIVE RD SHARMA-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. If A and B are two angles satisfying 0ltA,Blt(pi)/(2)and A+B=(pi)/(3),...

    Text Solution

    |

  2. If cos(theta - alpha) , costheta , cos(theta + alpha) are in H.P. then...

    Text Solution

    |

  3. If x sintheta=ysin(theta+(2pi)/(3))=z sin(theta+(4pi)/(3)), then

    Text Solution

    |

  4. If 2 sin alphacos beta sin gamma=sinbeta sin(alpha+gamma),then tan alp...

    Text Solution

    |

  5. lf cos 5theta=acos^5 theta + b cos^3 theta + c cos theta then c is ...

    Text Solution

    |

  6. Given tan A and tan B are the roots of x^2-ax + b = 0, The value of si...

    Text Solution

    |

  7. The value of sin^(6)((pi)/(49))+cos^(6)((pi)/(49))-1+3sin^(2)((pi)/(...

    Text Solution

    |

  8. Find the value of : sin^3alpha + sin^3(120^@ +alpha)+ sin^3(240^@+ a...

    Text Solution

    |

  9. If sin2 theta=3/4, then sin^(3)theta+cos^(3)theta=

    Text Solution

    |

  10. If (1+sqrt(1+x))tanx=1+sqrt(1-x), then sin 4x is equal to

    Text Solution

    |

  11. If A+B=pi/3 and cos A+cos B=1, then which of the following is/are true...

    Text Solution

    |

  12. Which of the following statements about tan10^(@) is true?

    Text Solution

    |

  13. Find The Value Of : sin(pi/18)*sin((5pi)/18)*sin((7pi)/18)

    Text Solution

    |

  14. If tanalpha=sqrta where a is not a perfect square then which of the fo...

    Text Solution

    |

  15. If sec2 theta=p+tan2 theta, then the value of sin^(2)theta is given by...

    Text Solution

    |

  16. The value of sin( pi/n) + sin ((3pi)/n)+ sin ((5pi)/n)+... to n terms ...

    Text Solution

    |

  17. The value of cos(pi/11)+cos((3pi)/11)+cos((5pi)/11)+cos((7pi)/11)+cos...

    Text Solution

    |

  18. sum(r=0)^(n) sin^(2)""(rpi)/(n) is equal to

    Text Solution

    |

  19. If tan""(2pi)/(18),x andtan""(7pi)/(18) are in A.P. and tan""(2pi)/(18...

    Text Solution

    |

  20. The Minimum value of 27^cosx +81^sinx is equal to

    Text Solution

    |