Home
Class 12
MATHS
For 0ltxlt(pi)/(6), all the values of ta...

For `0ltxlt(pi)/(6),` all the values of `tan^(2)3x cos^(2)x-4tan3xsin2x+16sin^(2)x` lie in the interval

A

`(0,(121)/(36))`

B

`(1,(121)/(9))`

C

`(-1,0)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^2(3x) \cos^2(x) - 4 \tan(3x) \sin(2x) + 16 \sin^2(x) \) for \( 0 < x < \frac{\pi}{6} \) and determine the interval of all its values, we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ y = \tan^2(3x) \cos^2(x) - 4 \tan(3x) \sin(2x) + 16 \sin^2(x) \] We know that \( \sin(2x) = 2 \sin(x) \cos(x) \), so we can substitute this into the expression: \[ y = \tan^2(3x) \cos^2(x) - 8 \tan(3x) \sin(x) \cos(x) + 16 \sin^2(x) \] ### Step 2: Factor out common terms Next, we can factor out \( \sin^2(x) \): \[ y = \sin^2(x) \left( \frac{\tan^2(3x)}{\cos^2(x)} - 8 \frac{\tan(3x)}{\sin(x) \cos(x)} + 16 \right) \] This simplifies to: \[ y = \sin^2(x) \left( \tan^2(3x) - 8 \tan(3x) \frac{1}{\sin(x)} + 16 \cos^2(x) \right) \] ### Step 3: Substitute \( \tan(3x) \) Let \( t = \tan(3x) \). Then, we can rewrite the expression as: \[ y = \sin^2(x) \left( t^2 - 8t + 16 \cos^2(x) \right) \] ### Step 4: Analyze the quadratic The quadratic \( t^2 - 8t + 16 \cos^2(x) \) can be analyzed using the quadratic formula: \[ t = \frac{8 \pm \sqrt{64 - 64 \cos^2(x)}}{2} = 4 \pm 4 \sqrt{1 - \cos^2(x)} = 4 \pm 4 \sin(x) \] Thus, the roots of the quadratic are: \[ t_1 = 4 + 4 \sin(x), \quad t_2 = 4 - 4 \sin(x) \] ### Step 5: Determine the range of \( t \) For \( x \) in the interval \( (0, \frac{\pi}{6}) \): - \( \sin(x) \) ranges from \( 0 \) to \( \frac{1}{2} \). - Therefore, \( t_1 \) ranges from \( 4 \) to \( 6 \) and \( t_2 \) ranges from \( 4 \) to \( 2 \). ### Step 6: Find the minimum and maximum values of \( y \) The minimum value of \( y \) occurs when \( \sin^2(x) = 0 \) (which gives \( y = 0 \)) and the maximum occurs when \( t = 6 \) (which gives the maximum value of \( y \)): \[ y_{\text{max}} = \sin^2(x) \cdot (6^2) = \sin^2(x) \cdot 36 \] At \( x = \frac{\pi}{6} \): \[ \sin^2\left(\frac{\pi}{6}\right) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] Thus: \[ y_{\text{max}} = 36 \cdot \frac{1}{4} = 9 \] ### Conclusion The values of \( y \) lie in the interval: \[ [0, 9] \]

To solve the expression \( \tan^2(3x) \cos^2(x) - 4 \tan(3x) \sin(2x) + 16 \sin^2(x) \) for \( 0 < x < \frac{\pi}{6} \) and determine the interval of all its values, we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ y = \tan^2(3x) \cos^2(x) - 4 \tan(3x) \sin(2x) + 16 \sin^2(x) \] We know that \( \sin(2x) = 2 \sin(x) \cos(x) \), so we can substitute this into the expression: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Exercise|190 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The value of f(x)=3sin sqrt(((pi^(2))/(16)-x^(2))) lie in the interval

If 0ltxlt(pi)/(2) then the minimum value of (cos^(3)x)/(sinx)+(sin^(3))/(cosx)(x)/(x) , is

If tan x=3/4,pi

sum of all the solutions of the equation cos2x+sin^(2)2x=1 which lie in the interval [0,2 pi] is equal to

If 0

The number of solutions of the equation cos6x+tan^(2)x+cos(6x)tan^(2)x=1 in the interval [0,2 pi] is (a)4(b)5(c)6(d)7

If tan x = 3/4, pi lt x lt (3pi)/(2), then the value of cos ""x/2 is

The total number of solutions of the equation tan x+sec x=2 which lie in the interval [0,2 pi] is

sin2x+2sin4x+sin6x= 4cos^(2)xsin4x

If sin x =(3)/(5) " and " 0 lt x lt (pi)/(2) find the value of tan (x)/(2)

OBJECTIVE RD SHARMA-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. The value of tan alpha +2tan(2alpha)+4tan(4alpha)+...+2^(n-1)tan(2^(n...

    Text Solution

    |

  2. यदि tantheta+tan(theta+pi/3)+tan(theta-pi/3)=ktan3theta तब k=

    Text Solution

    |

  3. For 0ltxlt(pi)/(6), all the values of tan^(2)3x cos^(2)x-4tan3xsin2x+1...

    Text Solution

    |

  4. In a cyclic quadrilateral ABCD, the value of 2+sum cos A soc B, is

    Text Solution

    |

  5. If x+y+z=pi, tan x tanz=2 and tanytanz=18,then tan^(2)z=

    Text Solution

    |

  6. Biggest among (sin1+cos1),(sqrt(sin1))+sqrt(cos1)),sqrt(1+sin2)and 1...

    Text Solution

    |

  7. In a DeltaABC, if tanA+2tanB=0, then which one is correct?

    Text Solution

    |

  8. The maximum value of 1+sin(pi/4+theta)+2cos(pi/4-theta) for real value...

    Text Solution

    |

  9. If y =4sin^(2)theta-cos2theta,then y lies in the interval

    Text Solution

    |

  10. If y=cos^2theta+sin^4theta then for all real values of theta

    Text Solution

    |

  11. The ratio of the greatest value of 2-cos x+s in^2x to its least value ...

    Text Solution

    |

  12. The least value of [cos^2 theta-6 sin theta. cos theta+3 sin^2 theta +...

    Text Solution

    |

  13. If y=tan^(2)theta+sectheta, thetane(2n+1)pi//2,then

    Text Solution

    |

  14. Two parallel chords of a circle, which are on the same side of centre,...

    Text Solution

    |

  15. If tanalpha+tanbeta+tangamma=tanalphatanbetatangamma,then

    Text Solution

    |

  16. If sinx+cosx=1/5,0lexlepi, then tan x is equal to

    Text Solution

    |

  17. For for A=133^(@),2cos""A/2is equal to

    Text Solution

    |

  18. A and B are positive acute angles satisfying the equations 3cos^(2)A+2...

    Text Solution

    |

  19. The expression (cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cosx) is equ...

    Text Solution

    |

  20. If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1...

    Text Solution

    |