Home
Class 12
MATHS
If sinx+cosx=1/5,0lexlepi, then tan x is...

If `sinx+cosx=1/5,0lexlepi,` then tan x is equal to

A

`-4/3or, -3/4`

B

`3/4`

C

`4/5`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin x + \cos x = \frac{1}{5} \) for \( \tan x \), we can follow these steps: ### Step 1: Square both sides We start with the equation: \[ \sin x + \cos x = \frac{1}{5} \] Squaring both sides gives: \[ (\sin x + \cos x)^2 = \left(\frac{1}{5}\right)^2 \] This simplifies to: \[ \sin^2 x + \cos^2 x + 2 \sin x \cos x = \frac{1}{25} \] ### Step 2: Use the Pythagorean identity Using the identity \( \sin^2 x + \cos^2 x = 1 \), we can rewrite the equation: \[ 1 + 2 \sin x \cos x = \frac{1}{25} \] Subtracting 1 from both sides gives: \[ 2 \sin x \cos x = \frac{1}{25} - 1 \] This simplifies to: \[ 2 \sin x \cos x = \frac{1 - 25}{25} = \frac{-24}{25} \] ### Step 3: Express \( \sin 2x \) We know that \( \sin 2x = 2 \sin x \cos x \), so we can write: \[ \sin 2x = \frac{-24}{25} \] ### Step 4: Relate \( \sin 2x \) to \( \tan x \) Using the double angle formula for sine: \[ \sin 2x = \frac{2 \tan x}{1 + \tan^2 x} \] We can set this equal to our previous result: \[ \frac{2 \tan x}{1 + \tan^2 x} = \frac{-24}{25} \] ### Step 5: Cross-multiply Cross-multiplying gives: \[ 2 \tan x \cdot 25 = -24(1 + \tan^2 x) \] This simplifies to: \[ 50 \tan x = -24 - 24 \tan^2 x \] ### Step 6: Rearrange into standard form Rearranging gives: \[ 24 \tan^2 x + 50 \tan x + 24 = 0 \] ### Step 7: Solve the quadratic equation We can use the quadratic formula \( \tan x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 24, b = 50, c = 24 \): \[ \tan x = \frac{-50 \pm \sqrt{50^2 - 4 \cdot 24 \cdot 24}}{2 \cdot 24} \] Calculating the discriminant: \[ 50^2 - 4 \cdot 24 \cdot 24 = 2500 - 2304 = 196 \] Thus: \[ \tan x = \frac{-50 \pm 14}{48} \] ### Step 8: Calculate the two possible values Calculating the two possible values: 1. \( \tan x = \frac{-50 + 14}{48} = \frac{-36}{48} = \frac{-3}{4} \) 2. \( \tan x = \frac{-50 - 14}{48} = \frac{-64}{48} = \frac{-4}{3} \) ### Final Result Thus, the possible values for \( \tan x \) are: \[ \tan x = \frac{-3}{4} \quad \text{or} \quad \tan x = \frac{-4}{3} \]

To solve the equation \( \sin x + \cos x = \frac{1}{5} \) for \( \tan x \), we can follow these steps: ### Step 1: Square both sides We start with the equation: \[ \sin x + \cos x = \frac{1}{5} \] Squaring both sides gives: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Exercise|190 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If 0ltxltpiand cosx+sinx=1/2, then tan x is equal to

Let f(x)={(1, AA, xlt0),(1+sinx, AA, 0lexlepi//2):} then what is the value of f'(x) at x=0 ?

If x_1 and x_2 are two distinct roots of the equation a cosx + b sinx =c then tan""(x_1 + x_2)/(2) is equal to :

if y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

If sinx+cosx=1/5 , then find the value of tan 2x .

OBJECTIVE RD SHARMA-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. Two parallel chords of a circle, which are on the same side of centre,...

    Text Solution

    |

  2. If tanalpha+tanbeta+tangamma=tanalphatanbetatangamma,then

    Text Solution

    |

  3. If sinx+cosx=1/5,0lexlepi, then tan x is equal to

    Text Solution

    |

  4. For for A=133^(@),2cos""A/2is equal to

    Text Solution

    |

  5. A and B are positive acute angles satisfying the equations 3cos^(2)A+2...

    Text Solution

    |

  6. The expression (cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cosx) is equ...

    Text Solution

    |

  7. If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1...

    Text Solution

    |

  8. The expression 2^(sintheta)+2^(-costheta) is minimum when theta is equ...

    Text Solution

    |

  9. If A is an obtause angle, then (sin^(3)A-cos^(3)A)/(sinA-cosA)+(sinA)/...

    Text Solution

    |

  10. In a triangle ABC, cos 3A + cos 3B + cos 3C = 1, then find any one ang...

    Text Solution

    |

  11. If alpha,beta,gamma,delta are the smallest positive angles in ascendin...

    Text Solution

    |

  12. If 0 ltx lt pi/2 and sin^n x + cos^n x gt= 1, then

    Text Solution

    |

  13. In a DeltaABC, cos A+cos B+cosC belongs to the interval

    Text Solution

    |

  14. In an acute-angled triangle ABC, tanA+tanB+tanC

    Text Solution

    |

  15. In a DeltaABC, sin A sinB sinC is

    Text Solution

    |

  16. In a DeltaABC, "the value of"cot""(A)/(2)cot""(B)/(2)cot""(C)/(2)is

    Text Solution

    |

  17. In a DeltaABC, cos""(A)/(2)cos""(B)/(2)cos""C/(2) is

    Text Solution

    |

  18. If 8sin^(3)xsin3xsin3x=sum(r=0)^(n)a^(r)cosrx is an identity in x, the...

    Text Solution

    |

  19. The number of integral triplets (a, b, c) such thet a+b cos 2x+c sin^(...

    Text Solution

    |

  20. If a sin x+b cos(x+theta)+b cos(x-theta)=d, then the minimum value of ...

    Text Solution

    |