Home
Class 12
MATHS
Statement-1: cos36^(@)gttan36^(@) Stat...

Statement-1: `cos36^(@)gttan36^(@)`
Statement-2: `cos36^(@)gtsin36^(@)`

A

Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement -1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

Verified by Experts

The correct Answer is:
B

For `0lethetalt(pi)/(4),"we have" cos thetagtsintheta.`
So, statement-2 is true.
Now, `cos36^(@)-tan36^(@)`
`=(cos^(2)36^(@)-sin36^(@))/(cos36^(@))`
`=(1+cos72^(@)-2sin36^(@))/(2cos36^(@))`
`=(1+sin18^(@)-2sin(30^(@)+6))/(2cos36^(@))`
`=(1+2sin9^(@)cos9^(@)-2(sin30^(@)cos6^(@)+cos30^(@)sin60^(@)))/(2cos36^(@))`
`=1+2sin9^(@)cos9^(@)-cos6^(@)-2cos30^(@)sin6^(@)`
`=(1-cos6^(@))+2(sin9^(@)cos9^(@)-cos30^(@)sin6^(@))`
`gt[because1-cos6^(@)gt0and sin9^(@)cos9^(@)gtcos30^(@)sin6^(@)]`
`thereforecos36^(@)-tan36^(@)gt0impliescos36^(@)gttan36^(@)`
So, statement-2 is true. But statement-2 is not a correct explanation for statement-1.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Exercise|190 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|106 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Prove that : cos36^@gttan36^@

cos36^(@)-cos72^(@)=

Evaluate: cos36^(@)

Statement-1: (cos36^(@)-cos72^(@))/(cos36^(@)cos72^(@))=2 Statement-2: sin15^(@)=(sqrt6-sqrt7)/(4)

Find the Value cos54^(@) or sin 36^(@)

Find the Value of cos36^(@) or sin54^(@)

tan9^(@)+tan36^(@)+tan9^(@)tan36^(@)=1

4cos36^(@)+cot7(1)/(2^(@))=

cos54^(@)cos36^(@)-sin54^(@)sin36^(@)=0