Home
Class 12
MATHS
Statement-1: If tanA, tanB are the roots...

Statement-1: If `tanA, tanB` are the roots of the equation `x^(2)-ax-1=0,then sin^(2)(A+B)=(a^(2))/(1+a^(2))`
Statement-2: `sin^(2)(A+B)=(tan^(2)(A+B))/(1+tan^(2)(A+B))`

A

Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement -1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

Verified by Experts

The correct Answer is:
D

We have,
`(tan^(2)theta)/(1+tan^(2)theta)=(tan^(2)theta)/(sec^(2)theta)=sin^(2)theta.`
So, statement-2 is true.
We have,
`tanA+tanB=aand tanAtanB=-1`
`thereforetan(A+B)=(tanA+tanB)/(1-tanAtanB)=a/2`
Hence, `sin^(2)(A+B)=(tan^(2)(A+B))/(1+tan^(2)(A+B))=((a^(2))/(4))/(1+(a^(2))/(4))=(a^(2))/(4+a^(2))`
So, statement-1 is not correcrt.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Exercise|190 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|106 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos