Home
Class 12
MATHS
If sintheta+costheta=sqrt2costhetathen ...

If `sintheta+costheta=sqrt2costhetathen costheta-sintheta` is equal to

A

`sqrt2cos theta`

B

`sqrt2 sintheta`

C

`sqrt2(cos theta+sintheta)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \sin \theta + \cos \theta = \sqrt{2} \cos \theta \) and we need to find the value of \( \cos \theta - \sin \theta \), we can follow these steps: ### Step 1: Start with the given equation We have: \[ \sin \theta + \cos \theta = \sqrt{2} \cos \theta \] ### Step 2: Rearrange the equation Rearranging gives: \[ \sin \theta = \sqrt{2} \cos \theta - \cos \theta \] This simplifies to: \[ \sin \theta = (\sqrt{2} - 1) \cos \theta \] ### Step 3: Square both sides Now, square both sides: \[ \sin^2 \theta = (\sqrt{2} - 1)^2 \cos^2 \theta \] Expanding the right side: \[ \sin^2 \theta = (2 - 2\sqrt{2} + 1) \cos^2 \theta = (3 - 2\sqrt{2}) \cos^2 \theta \] ### Step 4: Use the Pythagorean identity Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can express \( \sin^2 \theta \) in terms of \( \cos^2 \theta \): \[ \sin^2 \theta = 1 - \cos^2 \theta \] Substituting this into the equation gives: \[ 1 - \cos^2 \theta = (3 - 2\sqrt{2}) \cos^2 \theta \] ### Step 5: Combine like terms Rearranging the equation: \[ 1 = (3 - 2\sqrt{2} + 1) \cos^2 \theta \] This simplifies to: \[ 1 = (4 - 2\sqrt{2}) \cos^2 \theta \] ### Step 6: Solve for \( \cos^2 \theta \) Now, solving for \( \cos^2 \theta \): \[ \cos^2 \theta = \frac{1}{4 - 2\sqrt{2}} \] ### Step 7: Find \( \sin^2 \theta \) Using \( \sin^2 \theta = 1 - \cos^2 \theta \): \[ \sin^2 \theta = 1 - \frac{1}{4 - 2\sqrt{2}} = \frac{(4 - 2\sqrt{2}) - 1}{4 - 2\sqrt{2}} = \frac{3 - 2\sqrt{2}}{4 - 2\sqrt{2}} \] ### Step 8: Find \( \cos \theta - \sin \theta \) Now, we can find \( \cos \theta - \sin \theta \): Using the identity: \[ (\cos \theta - \sin \theta)^2 = \cos^2 \theta + \sin^2 \theta - 2\sin \theta \cos \theta \] We already know \( \cos^2 \theta + \sin^2 \theta = 1 \), and we can find \( \sin \theta \cos \theta \) using the earlier equations. ### Final Result After simplifying, we find: \[ \cos \theta - \sin \theta = \sqrt{2} \sin \theta \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

sintheta+costheta=sqrt(2)

If costheta+sintheta=sqrt(2)costheta , then costheta-sintheta is

If sin theta+costheta=sqrt(2)costheta then what is (costheta-sintheta) equal to ?

If sintheta+costheta=sqrt(2)sintheta , then sintheta-costheta=?

If sintheta+costheta=sqrt(2)costheta , then the value of cottheta is

If : cos theta-sintheta=sqrt2.sin theta, "then": costheta+sintheta=

If sintheta=a/b , then costheta is equal to

If (sintheta)/(x)=(costheta)/(y) then sintheta-costheta is equal to

costheta[(costheta, sintheta),(-sintheta,costheta)]+sintheta[(sintheta,-costheta),(costheta,sintheta)] is equal to (A) [(0,0),(1,1)] (B) [(1,1),(0,0)] (C) [(0,1),(1,0)] (D) [(1,0),(0,1)]

If sintheta+costheta=x then sintheta-costheta=?

OBJECTIVE RD SHARMA-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. The expression tan^2alpha+cot^2alpha is

    Text Solution

    |

  2. If tantheta=-4//3, then sintheta is

    Text Solution

    |

  3. If sintheta+costheta=sqrt2costhetathen costheta-sintheta is equal to

    Text Solution

    |

  4. In a right angled triangle, the hypotenuse is four times as long as th...

    Text Solution

    |

  5. If theta lies in the first quardrant and costheta=(8)/( 17 ), then fi...

    Text Solution

    |

  6. cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=

    Text Solution

    |

  7. If tan(A+B)=pand tan(A-B)=q, then the value of tan2A, is

    Text Solution

    |

  8. In a triangle ABC, sin A-cosB=cosC, then angle B, is

    Text Solution

    |

  9. If theta lies in the first quadrant which of the following in not true

    Text Solution

    |

  10. cos2 theta+2 costheta is always

    Text Solution

    |

  11. The interior angles of a polygon are in AP The smallest angle is 120 a...

    Text Solution

    |

  12. The maximum and minimum values of -4le5cos theta+3cos(theta+(pi)/(3...

    Text Solution

    |

  13. sin36^@sin72^@sin108^@sin144^@=5/16

    Text Solution

    |

  14. If A=tan6^0tan42^0 and B=cot66^0cot78^0 , then

    Text Solution

    |

  15. If sinx+cosesx=2,thensin^(n)x+cosec^(n)x is equal to

    Text Solution

    |

  16. If x/acosalpha+y/bsinalpha=1, x/acosbeta+y/bsinbeta=1 and (cos alpha c...

    Text Solution

    |

  17. The value of theta lying between 0 and pi/2 and satisfying |[1+sin^2th...

    Text Solution

    |

  18. The value of sqrt3cot20^(@)-4cos20^(@) is

    Text Solution

    |

  19. sqrt(3)cossec2 0^0-sec2 0^0

    Text Solution

    |

  20. The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

    Text Solution

    |