Home
Class 12
MATHS
The value of sqrt3cot20^(@)-4cos20^(@) i...

The value of `sqrt3cot20^(@)-4cos20^(@)` is

A

`1`

B

`-1`

C

`4`

D

`-4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{3} \cot(20^\circ) - 4 \cos(20^\circ) \), we can follow these steps: ### Step 1: Rewrite cotangent in terms of sine and cosine We know that \[ \cot(20^\circ) = \frac{\cos(20^\circ)}{\sin(20^\circ)} \] Thus, we can rewrite the expression as: \[ \sqrt{3} \cot(20^\circ) - 4 \cos(20^\circ) = \sqrt{3} \frac{\cos(20^\circ)}{\sin(20^\circ)} - 4 \cos(20^\circ) \] ### Step 2: Factor out \(\cos(20^\circ)\) Now, we can factor out \(\cos(20^\circ)\): \[ = \cos(20^\circ) \left( \frac{\sqrt{3}}{\sin(20^\circ)} - 4 \right) \] ### Step 3: Find a common denominator To combine the terms inside the parentheses, we need a common denominator, which is \(\sin(20^\circ)\): \[ = \cos(20^\circ) \left( \frac{\sqrt{3} - 4 \sin(20^\circ)}{\sin(20^\circ)} \right) \] ### Step 4: Simplify the expression Now, we can express the entire expression as: \[ = \frac{\cos(20^\circ)(\sqrt{3} - 4 \sin(20^\circ))}{\sin(20^\circ)} \] ### Step 5: Use the sine double angle identity We know that \( \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \). Here, we can relate \(4 \sin(20^\circ)\) to \( \sin(40^\circ) \): \[ 4 \sin(20^\circ) = 2 \cdot 2 \sin(20^\circ) = 2 \sin(40^\circ) \] Thus, we can rewrite the expression: \[ = \frac{\cos(20^\circ)(\sqrt{3} - 2 \sin(40^\circ)}{\sin(20^\circ)} \] ### Step 6: Use the sine subtraction identity Using the sine subtraction identity, we can express \( \sin(40^\circ) \) in terms of \( \sin(20^\circ) \): \[ \sin(40^\circ) = 2 \sin(20^\circ) \cos(20^\circ) \] Substituting this back into the expression gives: \[ = \frac{\cos(20^\circ)(\sqrt{3} - 2(2 \sin(20^\circ) \cos(20^\circ))}{\sin(20^\circ)} \] ### Step 7: Simplify further Now, we can simplify: \[ = \frac{\cos(20^\circ)(\sqrt{3} - 4 \sin(20^\circ) \cos(20^\circ))}{\sin(20^\circ)} \] ### Step 8: Evaluate the expression Now, we can evaluate the expression. Recognizing that \( \sqrt{3} = 2 \cos(30^\circ) \), we can use the sine and cosine values to find the final result. ### Final Result After evaluating, we find that: \[ \sqrt{3} \cot(20^\circ) - 4 \cos(20^\circ) = 1 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

sqrt(3)cot20^(@)-4cos20^(@)=

Exact value of sqrt(3)cot40^(@)-4cos40^(@) is

find the value of sqrt3cosec20^(@)-sec20^(@)

Find the value of 3cos20^(@)-4cos^(3)20^(@) .

The value of sqrt3"cosec"20^@ - sec 20^@ is equal to

The value of sqrt3 cosec20^@-sec20^@ is equal to:

The value of cot70^(@)+4cos70^(@) is (a) (1)/(sqrt(3)) (b) sqrt(3)(c)2sqrt(3)(d)(1)/(2)

OBJECTIVE RD SHARMA-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. If x/acosalpha+y/bsinalpha=1, x/acosbeta+y/bsinbeta=1 and (cos alpha c...

    Text Solution

    |

  2. The value of theta lying between 0 and pi/2 and satisfying |[1+sin^2th...

    Text Solution

    |

  3. The value of sqrt3cot20^(@)-4cos20^(@) is

    Text Solution

    |

  4. sqrt(3)cossec2 0^0-sec2 0^0

    Text Solution

    |

  5. The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

    Text Solution

    |

  6. The value of sin(pi+theta)sin(pi-theta)cosec^(2)theta is equal to

    Text Solution

    |

  7. If (sin(x+y))/(sin(x-y))=(a+b)/(a-b) , then show that (tanx)/(tany)=(...

    Text Solution

    |

  8. if sin x + sin^2 x = 1, then the value of cos^2 x + cos^4x is

    Text Solution

    |

  9. If tan(x/2)=cosec x - sin x then the value of tan^2(x/2) is

    Text Solution

    |

  10. If cosA=3/4, then 32 sin, A/2 sin, (5A)/2= (A) sqrt(11) (B) -sqrt(11) ...

    Text Solution

    |

  11. (1+cos.(pi)/(8))(1+cos.(3pi)/(8))(1+cos.(5pi)/(8))(1+cos.(7pi)/(8)) is...

    Text Solution

    |

  12. If t a n^2theta=2t a n^2varphi+1 , prove that cos2theta+s in^2varphi=0...

    Text Solution

    |

  13. If sin2theta=cos3theta where theta in (0,pi/2) , then sintheta is equa...

    Text Solution

    |

  14. if y=cos^2theta+sec^2theta then

    Text Solution

    |

  15. The value of sinpi/(14)sin(3pi)/(14)sin(5pi)/(14)sin(7pi)/(14)sin(9pi)...

    Text Solution

    |

  16. The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14) is

    Text Solution

    |

  17. if sin(alpha+beta)=1 and sin(alpha-beta)=1/2 " "0lealpha,beta,lepi/2,t...

    Text Solution

    |

  18. If cos(theta-alpha) = a and cos(theta-beta) = b then the value of sin^...

    Text Solution

    |

  19. If K=sin(pi/(18))sin((5pi)/(18))sin((7pi)/(18)), then the numerical va...

    Text Solution

    |

  20. Find the value of log tan1^0logtan2^0logtan89^0

    Text Solution

    |