Home
Class 12
MATHS
If costheta=cos alphacosbeta, then tan((...

If `costheta=cos alphacosbeta, then tan((theta+alpha)/(2))tan((theta-alpha)/(2))` is equal to

A

`tan^(2)""(alpha)/(2)`

B

`tan^(2)""(beta)/(2)`

C

`tan^(2)""(theta)/(2)`

D

`cot^(2)""(beta)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan\left(\frac{\theta + \alpha}{2}\right) \tan\left(\frac{\theta - \alpha}{2}\right) \) given that \( \cos \theta = \cos \alpha \cos \beta \). ### Step-by-Step Solution: 1. **Start with the given equation**: \[ \cos \theta = \cos \alpha \cos \beta \] 2. **Express the tangent in terms of sine and cosine**: \[ \tan\left(\frac{\theta + \alpha}{2}\right) = \frac{\sin\left(\frac{\theta + \alpha}{2}\right)}{\cos\left(\frac{\theta + \alpha}{2}\right)} \] \[ \tan\left(\frac{\theta - \alpha}{2}\right) = \frac{\sin\left(\frac{\theta - \alpha}{2}\right)}{\cos\left(\frac{\theta - \alpha}{2}\right)} \] 3. **Combine the two tangents**: \[ \tan\left(\frac{\theta + \alpha}{2}\right) \tan\left(\frac{\theta - \alpha}{2}\right) = \frac{\sin\left(\frac{\theta + \alpha}{2}\right) \sin\left(\frac{\theta - \alpha}{2}\right)}{\cos\left(\frac{\theta + \alpha}{2}\right) \cos\left(\frac{\theta - \alpha}{2}\right)} \] 4. **Use the product-to-sum identities**: \[ \sin A \sin B = \frac{1}{2} \left[ \cos(A - B) - \cos(A + B) \right] \] Here, let \( A = \frac{\theta + \alpha}{2} \) and \( B = \frac{\theta - \alpha}{2} \): \[ \sin\left(\frac{\theta + \alpha}{2}\right) \sin\left(\frac{\theta - \alpha}{2}\right) = \frac{1}{2} \left[ \cos\left(\frac{\theta - \alpha}{2} - \frac{\theta + \alpha}{2}\right) - \cos\left(\frac{\theta - \alpha}{2} + \frac{\theta + \alpha}{2}\right) \right] \] This simplifies to: \[ = \frac{1}{2} \left[ \cos(-\alpha) - \cos(\theta) \right] = \frac{1}{2} \left[ \cos \alpha - \cos \theta \right] \] 5. **Substituting \( \cos \theta \)**: Substitute \( \cos \theta = \cos \alpha \cos \beta \): \[ = \frac{1}{2} \left[ \cos \alpha - \cos \alpha \cos \beta \right] = \frac{1}{2} \cos \alpha (1 - \cos \beta) \] 6. **Now for the denominator**: Using the identity for cosine: \[ \cos\left(\frac{\theta + \alpha}{2}\right) \cos\left(\frac{\theta - \alpha}{2}\right) = \frac{1}{2} \left[ \cos(\theta) + \cos(\alpha) \right] \] Substitute \( \cos \theta = \cos \alpha \cos \beta \): \[ = \frac{1}{2} \left[ \cos \alpha \cos \beta + \cos \alpha \right] = \frac{1}{2} \cos \alpha (1 + \cos \beta) \] 7. **Final expression**: Now, we can simplify: \[ \tan\left(\frac{\theta + \alpha}{2}\right) \tan\left(\frac{\theta - \alpha}{2}\right) = \frac{\frac{1}{2} \cos \alpha (1 - \cos \beta)}{\frac{1}{2} \cos \alpha (1 + \cos \beta)} = \frac{1 - \cos \beta}{1 + \cos \beta} \] ### Conclusion: Thus, the final result is: \[ \tan\left(\frac{\theta + \alpha}{2}\right) \tan\left(\frac{\theta - \alpha}{2}\right) = \frac{1 - \cos \beta}{1 + \cos \beta} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
OBJECTIVE RD SHARMA-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. Find the value of : cos(pi/15)cos((2pi)/15)cos((3pi)/15)cos((4pi)/15)c...

    Text Solution

    |

  2. The value of tan 5 theta is

    Text Solution

    |

  3. If costheta=cos alphacosbeta, then tan((theta+alpha)/(2))tan((theta-al...

    Text Solution

    |

  4. If abs(cos theta{sin theta+sqrt(sin^2theta+sin^2alpha)})lek, then the ...

    Text Solution

    |

  5. The value of sin10^@+sin20^@+sin30^@...+sin360^@ is equal to -

    Text Solution

    |

  6. The expression 3{sin^(4)((3pi)/(2)-alpha)+sin^(4)(3pi-alpha)} -2{s...

    Text Solution

    |

  7. If sinA+sinB=(pi)/(4),then (tanA+1)(tanB+1) is equal to

    Text Solution

    |

  8. If sinA+sinB=a and cosA+cosB=b,then cos(A+B)

    Text Solution

    |

  9. If an angle theta is divided into two parts A and B such that A-B=x an...

    Text Solution

    |

  10. The value of the expression 3(sin theta- cos theta)^4 + 6(sin theta ...

    Text Solution

    |

  11. If tan((theta)/(2))=5/2and tan((phi)/(2))=3/4, the value of cos(theta+...

    Text Solution

    |

  12. If alpha,beta, gamma in(0,(pi)/(2)), then prove that (Sin(alpha+beta+g...

    Text Solution

    |

  13. If sin x+siny=3(cosy-cosx),then the value of (sin3x)/(sin3y), is

    Text Solution

    |

  14. If cosx=tany,cos y=tanz cosz=tanx, then the value of sin x, is

    Text Solution

    |

  15. If k=sin^(6)c+cos^(6)x, then k belongs to the interval

    Text Solution

    |

  16. The value of tan9^@-tan2 7^@-tan6 3^@+tan8 1^@ is equal to

    Text Solution

    |

  17. 2tan^2 alpha tan^2 betatan^2gamma+tan^2 alpha tan^2beta+tan^2 betatan^...

    Text Solution

    |

  18. the value of e^(log(10)tan1^@+log(10)tan2^@+log(10)tan3^@....+log(10)t...

    Text Solution

    |

  19. For what and only what values of alpha lying between 0 and pi/2 is the...

    Text Solution

    |

  20. If (secA-tanA)(secB-tanB)(secC+tanC)=(secA+tanA)(secB+tanB)(secC-tanC)...

    Text Solution

    |