Home
Class 12
MATHS
The value of cos""(pi)/(9)cos""(2pi)/(9)...

The value of `cos""(pi)/(9)cos""(2pi)/(9)cos""(3pi)/(9)cos""(4pi)/(9),` is

A

`1/8`

B

`1/16`

C

`1/64`

D

`1/4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos\left(\frac{\pi}{9}\right) \cos\left(\frac{2\pi}{9}\right) \cos\left(\frac{3\pi}{9}\right) \cos\left(\frac{4\pi}{9}\right) \), we can follow these steps: ### Step 1: Simplify \( \cos\left(\frac{3\pi}{9}\right) \) First, we simplify \( \cos\left(\frac{3\pi}{9}\right) \): \[ \cos\left(\frac{3\pi}{9}\right) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] ### Step 2: Rewrite the expression Now, we can rewrite the expression: \[ \cos\left(\frac{\pi}{9}\right) \cos\left(\frac{2\pi}{9}\right) \cos\left(\frac{3\pi}{9}\right) \cos\left(\frac{4\pi}{9}\right) = \cos\left(\frac{\pi}{9}\right) \cos\left(\frac{2\pi}{9}\right) \cdot \frac{1}{2} \cdot \cos\left(\frac{4\pi}{9}\right) \] This simplifies to: \[ \frac{1}{2} \cos\left(\frac{\pi}{9}\right) \cos\left(\frac{2\pi}{9}\right) \cos\left(\frac{4\pi}{9}\right) \] ### Step 3: Use the product-to-sum identities Next, we can use the product-to-sum identities to simplify \( \cos\left(\frac{\pi}{9}\right) \cos\left(\frac{4\pi}{9}\right) \): \[ \cos A \cos B = \frac{1}{2} \left( \cos(A+B) + \cos(A-B) \right) \] Here, let \( A = \frac{\pi}{9} \) and \( B = \frac{4\pi}{9} \): \[ \cos\left(\frac{\pi}{9}\right) \cos\left(\frac{4\pi}{9}\right) = \frac{1}{2} \left( \cos\left(\frac{5\pi}{9}\right) + \cos\left(-\frac{3\pi}{9}\right) \right) \] Since \( \cos(-x) = \cos(x) \): \[ \cos\left(-\frac{3\pi}{9}\right) = \cos\left(\frac{3\pi}{9}\right) = \frac{1}{2} \] So, we have: \[ \cos\left(\frac{\pi}{9}\right) \cos\left(\frac{4\pi}{9}\right) = \frac{1}{2} \left( \cos\left(\frac{5\pi}{9}\right) + \frac{1}{2} \right) \] ### Step 4: Substitute back into the expression Now substituting back: \[ \frac{1}{2} \cdot \frac{1}{2} \left( \cos\left(\frac{5\pi}{9}\right) + \frac{1}{2} \right) \cos\left(\frac{2\pi}{9}\right) \] This becomes: \[ \frac{1}{4} \left( \cos\left(\frac{5\pi}{9}\right) + \frac{1}{2} \right) \cos\left(\frac{2\pi}{9}\right) \] ### Step 5: Evaluate \( \cos\left(\frac{5\pi}{9}\right) \) Using the identity \( \cos\left(\frac{5\pi}{9}\right) = -\cos\left(\frac{4\pi}{9}\right) \): \[ \cos\left(\frac{5\pi}{9}\right) + \frac{1}{2} = -\cos\left(\frac{4\pi}{9}\right) + \frac{1}{2} \] This results in: \[ \frac{1}{4} \left(-\cos\left(\frac{4\pi}{9}\right) + \frac{1}{2}\right) \cos\left(\frac{2\pi}{9}\right) \] ### Step 6: Final Calculation After evaluating the above expression, we find: \[ \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8} \] Thus, the value of \( \cos\left(\frac{\pi}{9}\right) \cos\left(\frac{2\pi}{9}\right) \cos\left(\frac{3\pi}{9}\right) \cos\left(\frac{4\pi}{9}\right) \) is: \[ \frac{1}{16} \] ### Final Answer The value is \( \frac{1}{16} \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The value of cos""(pi)/(9)cos""(2pi)/(9)cos""(3pi)/(9), is

The value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""(7pi)/(11)+cos""(9pi)/(11), is

cos""(pi)/(15).cos""(2pi)/(15).cos""(4pi)/(15).cos""(8pi)/(15) is equal to

cos""(pi)/(7)+cos""(2pi)/(7)+cos""(3pi)/(7)+......cos""(6pi)/(7)=?

The value of 2"cos"(pi)/(13)"cos"(9pi)/(13)+"cos"(3pi)/(13)+"cos"(5pi)/(13) is

The value of cos(pi)/(5)cos.2(pi)/(5)cos4(pi)/(5)cos8(pi)/(5)=

The value of cos((2pi)/(15))cos((4pi)/(15))cos((8pi)/(15))cos((14pi)/(15)), is

cos ""(2pi)/( 15) cos ""(4pi)/(15) cos ""(8pi)/(15) cos ""(16pi)/(15)=

OBJECTIVE RD SHARMA-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. cos(2pi/7)+cos(4pi/7)+cos(6pi/7)

    Text Solution

    |

  2. The value of cos""(pi)/(9)cos""(2pi)/(9)cos""(3pi)/(9), is

    Text Solution

    |

  3. The value of cos""(pi)/(9)cos""(2pi)/(9)cos""(3pi)/(9)cos""(4pi)/(9), ...

    Text Solution

    |

  4. The vlaue of cosec^(2)""(pi)/(7)+cosec^(2)""(2pi)/(7)+cosec^(2)""(3pi)...

    Text Solution

    |

  5. sin1 2^(@)sin4 8^(@)sin5 4^(@)=

    Text Solution

    |

  6. the value of sin(pi/7)+sin((2pi)/7)+sin((3pi)/7) is

    Text Solution

    |

  7. cos^6pi/9-33tan^4pi/9+27tan^2pi/9 is equal to 0 (b) sqrt(3) (c) 3 ...

    Text Solution

    |

  8. (sin^2 3A)/(sin^2A)-(cos^2 3A)/(cos^2A)=

    Text Solution

    |

  9. If sinA=(336)/(625)where450^(@)ltAlt540^(@), then sin""(A)/(4)=

    Text Solution

    |

  10. If y=(tanx)/(tan3x), then

    Text Solution

    |

  11. The value of cot^(2)""(pi)/(7)+cot^(2)""(2pi)/(7)+cot^(2)""(3pi)/(7), ...

    Text Solution

    |

  12. The value of sin""(pi)/(7)sin""(2pi)/(7)sin""(3pi)/(7), is

    Text Solution

    |

  13. The value of sin""(2pi)/(7)+sin""(4pi)/(7)+sin""(8pi)/(7), is

    Text Solution

    |

  14. cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos""(16pi)/(15)=(1)/(16)

    Text Solution

    |

  15. If sinA+cosA=m an sin^(3)A+cos^(3)A=n, then

    Text Solution

    |

  16. If cosA+cosB=m and sinA+sinB=n then sin(A+B)=

    Text Solution

    |

  17. If ltA lt(pi)/(6) and sinA+cosA=(sqrt7)/(2),"then" tan""(A)/(2)=

    Text Solution

    |

  18. The value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""(7pi)...

    Text Solution

    |

  19. If n=pi/(4alpha), then tanalpha tan 2alpha tan 3 alpha........tan(2n-1...

    Text Solution

    |

  20. the value of tan9^@-tan2 7^@-tan6 3^@+tan8 1^@ is equal to

    Text Solution

    |