Home
Class 12
MATHS
If sinA=(336)/(625)where450^(@)ltAlt540^...

If `sinA=(336)/(625)where450^(@)ltAlt540^(@), then sin""(A)/(4)=`

A

`3//5`

B

`-3//5`

C

`4//5`

D

`-4//5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\sin\left(\frac{A}{4}\right)\) given that \(\sin A = \frac{336}{625}\) and \(450^\circ < A < 540^\circ\). ### Step-by-Step Solution: 1. **Identify the Quadrant for Angle A:** Since \(A\) is in the range \(450^\circ < A < 540^\circ\), it lies in the second quadrant where sine is positive and cosine is negative. 2. **Calculate \(\cos A\):** We use the identity: \[ \cos^2 A = 1 - \sin^2 A \] First, calculate \(\sin^2 A\): \[ \sin^2 A = \left(\frac{336}{625}\right)^2 = \frac{112896}{390625} \] Now, substitute this into the cosine formula: \[ \cos^2 A = 1 - \frac{112896}{390625} = \frac{390625 - 112896}{390625} = \frac{277729}{390625} \] Taking the square root, since cosine is negative in the second quadrant: \[ \cos A = -\sqrt{\frac{277729}{390625}} = -\frac{527}{625} \] 3. **Use the Half-Angle Formula for Cosine:** The half-angle formula states: \[ \cos A = 2 \cos^2\left(\frac{A}{2}\right) - 1 \] Setting this equal to our value of \(\cos A\): \[ -\frac{527}{625} = 2 \cos^2\left(\frac{A}{2}\right) - 1 \] Rearranging gives: \[ 2 \cos^2\left(\frac{A}{2}\right) = -\frac{527}{625} + 1 = \frac{625 - 527}{625} = \frac{98}{625} \] Thus, \[ \cos^2\left(\frac{A}{2}\right) = \frac{49}{625} \] Taking the square root: \[ \cos\left(\frac{A}{2}\right) = \frac{7}{25} \] 4. **Determine the Sign of \(\cos\left(\frac{A}{2}\right)\):** Since \(A\) is between \(450^\circ\) and \(540^\circ\), \(\frac{A}{2}\) will be between \(225^\circ\) and \(270^\circ\), which is in the third quadrant where cosine is negative: \[ \cos\left(\frac{A}{2}\right) = -\frac{7}{25} \] 5. **Use the Half-Angle Formula for Sine:** The sine half-angle formula is: \[ \sin^2\left(\frac{A}{2}\right) = 1 - \cos^2\left(\frac{A}{2}\right) \] Substituting our value: \[ \sin^2\left(\frac{A}{2}\right) = 1 - \left(-\frac{7}{25}\right)^2 = 1 - \frac{49}{625} = \frac{576}{625} \] Taking the square root: \[ \sin\left(\frac{A}{2}\right) = \frac{24}{25} \] 6. **Calculate \(\sin\left(\frac{A}{4}\right)\):** Using the half-angle formula again: \[ \sin\left(\frac{A}{4}\right) = \sqrt{\frac{1 - \cos\left(\frac{A}{2}\right)}{2}} = \sqrt{\frac{1 - \left(-\frac{7}{25}\right)}{2}} = \sqrt{\frac{1 + \frac{7}{25}}{2}} = \sqrt{\frac{\frac{32}{25}}{2}} = \sqrt{\frac{32}{50}} = \sqrt{\frac{16}{25}} = \frac{4}{5} \] ### Final Answer: \[ \sin\left(\frac{A}{4}\right) = \frac{4}{5} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If sin alpha=336/625 and 450^(@) lt alpha lt 540^(@) ,then sin((alpha)/(4)) is equal to

If sin A = 3/5 , where 450^@ lt A lt 540^@ , then cos A/2 is equal to:

If sinA=3/5 , where 0^(@)ltA lt 90^(@) , find the values of sin 2A, cos 2A, tan 2A and sin 4A .

sinA. sin(A+B)=

If sin A=11//61, "where" 0ltAlt(pi//2), "then : (secA+tanA)/(cotA-cscA)= A) 66//13 B) -13//66 C) -66//15 D) -66//5

(625)^(-3/4)

If sin theta=(3)/(5) and 0

The value of (sinA)/(1+cosA)+(sinA)/(1-cosA) is (0^(@)ltAlt90^(@))

If sin4A-cos2A=cos4A-sin2A ("where",0ltAlt(pi)/(4)) , then the value of tan 4A is

If sin2A=2sinA then A=

OBJECTIVE RD SHARMA-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. cos^6pi/9-33tan^4pi/9+27tan^2pi/9 is equal to 0 (b) sqrt(3) (c) 3 ...

    Text Solution

    |

  2. (sin^2 3A)/(sin^2A)-(cos^2 3A)/(cos^2A)=

    Text Solution

    |

  3. If sinA=(336)/(625)where450^(@)ltAlt540^(@), then sin""(A)/(4)=

    Text Solution

    |

  4. If y=(tanx)/(tan3x), then

    Text Solution

    |

  5. The value of cot^(2)""(pi)/(7)+cot^(2)""(2pi)/(7)+cot^(2)""(3pi)/(7), ...

    Text Solution

    |

  6. The value of sin""(pi)/(7)sin""(2pi)/(7)sin""(3pi)/(7), is

    Text Solution

    |

  7. The value of sin""(2pi)/(7)+sin""(4pi)/(7)+sin""(8pi)/(7), is

    Text Solution

    |

  8. cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos""(16pi)/(15)=(1)/(16)

    Text Solution

    |

  9. If sinA+cosA=m an sin^(3)A+cos^(3)A=n, then

    Text Solution

    |

  10. If cosA+cosB=m and sinA+sinB=n then sin(A+B)=

    Text Solution

    |

  11. If ltA lt(pi)/(6) and sinA+cosA=(sqrt7)/(2),"then" tan""(A)/(2)=

    Text Solution

    |

  12. The value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""(7pi)...

    Text Solution

    |

  13. If n=pi/(4alpha), then tanalpha tan 2alpha tan 3 alpha........tan(2n-1...

    Text Solution

    |

  14. the value of tan9^@-tan2 7^@-tan6 3^@+tan8 1^@ is equal to

    Text Solution

    |

  15. For x in R, tanx+1/2tan""(1)/(2^(2))tan""(x)/(2^(2))+...+(1)/(2^(n-1...

    Text Solution

    |

  16. If (tan3A)/(tanA)=k, then (sin3A)/(sinA)=

    Text Solution

    |

  17. If y=(sec^(2)theta-tantheta)/(sec^(2)theta+tantheta)'then

    Text Solution

    |

  18. If cosA=tanB, cos B=tanC, cosC=tanA, then sin A is equal to

    Text Solution

    |

  19. If A(1)A(2)A(3)A(4)A(5) be regular pentgon inscribed in anunit circle....

    Text Solution

    |

  20. If tanalpha is equal to the integral solution of the inequality 4x^2-1...

    Text Solution

    |