Home
Class 12
MATHS
If y=(tanx)/(tan3x), then...

If `y=(tanx)/(tan3x),` then

A

`yin[1//3,3]`

B

`y!in[1//3,3]`

C

`yin[-3,-1//3]`

D

`yin[-3,-1//3]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( y = \frac{\tan x}{\tan 3x} \), we will find the range of \( y \). ### Step 1: Use the formula for \( \tan 3x \) We know that: \[ \tan 3x = \frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} \] Substituting this into our expression for \( y \): \[ y = \frac{\tan x}{\tan 3x} = \frac{\tan x}{\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x}} = \frac{\tan x (1 - 3 \tan^2 x)}{3 \tan x - \tan^3 x} \] ### Step 2: Simplify the expression Assuming \( \tan x \neq 0 \) (as it would make \( y \) undefined), we can simplify: \[ y = \frac{1 - 3 \tan^2 x}{3 - \tan^2 x} \] Let \( t = \tan^2 x \). Thus, we can rewrite \( y \) as: \[ y = \frac{1 - 3t}{3 - t} \] ### Step 3: Analyze the expression To find the range of \( y \), we need to analyze the expression: \[ y = \frac{1 - 3t}{3 - t} \] We will find the values of \( y \) as \( t \) varies from \( 0 \) to \( \infty \). ### Step 4: Find critical points To find critical points, we can set the derivative of \( y \) with respect to \( t \) to zero. Using the quotient rule: \[ \frac{dy}{dt} = \frac{(3 - t)(-3) - (1 - 3t)(-1)}{(3 - t)^2} \] Setting the numerator equal to zero gives: \[ -3(3 - t) + (1 - 3t) = 0 \] Simplifying this: \[ -9 + 3t + 1 - 3t = 0 \implies -8 = 0 \] This indicates that there are no critical points in the domain of \( t \). ### Step 5: Evaluate limits Now we evaluate the limits as \( t \) approaches \( 0 \) and \( \infty \): - As \( t \to 0 \): \[ y \to \frac{1 - 0}{3 - 0} = \frac{1}{3} \] - As \( t \to \infty \): \[ y \to \frac{-\infty}{-\infty} \text{ (indeterminate form, we need to analyze further)} \] To analyze this limit: \[ y \to \frac{-3t}{-t} = 3 \] ### Step 6: Determine the range of \( y \) From our evaluations: - As \( t \) approaches \( 0 \), \( y \) approaches \( \frac{1}{3} \). - As \( t \) approaches \( \infty \), \( y \) approaches \( 3 \). Thus, \( y \) can take values from \( -\infty \) to \( \frac{1}{3} \) and from \( 3 \) to \( \infty \), but it cannot take values between \( \frac{1}{3} \) and \( 3 \). ### Final Answer The range of \( y \) is: \[ y \in (-\infty, \frac{1}{3}) \cup (3, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
OBJECTIVE RD SHARMA-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. (sin^2 3A)/(sin^2A)-(cos^2 3A)/(cos^2A)=

    Text Solution

    |

  2. If sinA=(336)/(625)where450^(@)ltAlt540^(@), then sin""(A)/(4)=

    Text Solution

    |

  3. If y=(tanx)/(tan3x), then

    Text Solution

    |

  4. The value of cot^(2)""(pi)/(7)+cot^(2)""(2pi)/(7)+cot^(2)""(3pi)/(7), ...

    Text Solution

    |

  5. The value of sin""(pi)/(7)sin""(2pi)/(7)sin""(3pi)/(7), is

    Text Solution

    |

  6. The value of sin""(2pi)/(7)+sin""(4pi)/(7)+sin""(8pi)/(7), is

    Text Solution

    |

  7. cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos""(16pi)/(15)=(1)/(16)

    Text Solution

    |

  8. If sinA+cosA=m an sin^(3)A+cos^(3)A=n, then

    Text Solution

    |

  9. If cosA+cosB=m and sinA+sinB=n then sin(A+B)=

    Text Solution

    |

  10. If ltA lt(pi)/(6) and sinA+cosA=(sqrt7)/(2),"then" tan""(A)/(2)=

    Text Solution

    |

  11. The value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""(7pi)...

    Text Solution

    |

  12. If n=pi/(4alpha), then tanalpha tan 2alpha tan 3 alpha........tan(2n-1...

    Text Solution

    |

  13. the value of tan9^@-tan2 7^@-tan6 3^@+tan8 1^@ is equal to

    Text Solution

    |

  14. For x in R, tanx+1/2tan""(1)/(2^(2))tan""(x)/(2^(2))+...+(1)/(2^(n-1...

    Text Solution

    |

  15. If (tan3A)/(tanA)=k, then (sin3A)/(sinA)=

    Text Solution

    |

  16. If y=(sec^(2)theta-tantheta)/(sec^(2)theta+tantheta)'then

    Text Solution

    |

  17. If cosA=tanB, cos B=tanC, cosC=tanA, then sin A is equal to

    Text Solution

    |

  18. If A(1)A(2)A(3)A(4)A(5) be regular pentgon inscribed in anunit circle....

    Text Solution

    |

  19. If tanalpha is equal to the integral solution of the inequality 4x^2-1...

    Text Solution

    |

  20. If (x)/(cos theta)=(y)/(cos(theta-(2pi)/(2)))=(2)/(cos(theta+(2pi)/(3)...

    Text Solution

    |