Home
Class 12
MATHS
If ltA lt(pi)/(6) and sinA+cosA=(sqrt7)/...

If `ltA lt(pi)/(6) and sinA+cosA=(sqrt7)/(2),"then" tan""(A)/(2)=`

A

`(sqrt7-2)/(3)`

B

`(sqrt7+2)/(3)`

C

`(sqrt7)/(3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan\left(\frac{A}{2}\right) \) given that \( A < \frac{\pi}{6} \) and \( \sin A + \cos A = \frac{\sqrt{7}}{2} \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \sin A + \cos A = \frac{\sqrt{7}}{2} \] 2. **Use the identities for sine and cosine in terms of \( \tan\left(\frac{A}{2}\right) \):** \[ \sin A = \frac{2\tan\left(\frac{A}{2}\right)}{1 + \tan^2\left(\frac{A}{2}\right)} \quad \text{and} \quad \cos A = \frac{1 - \tan^2\left(\frac{A}{2}\right)}{1 + \tan^2\left(\frac{A}{2}\right)} \] Let \( x = \tan\left(\frac{A}{2}\right) \). 3. **Substituting the identities into the equation:** \[ \frac{2x}{1 + x^2} + \frac{1 - x^2}{1 + x^2} = \frac{\sqrt{7}}{2} \] 4. **Combine the fractions:** \[ \frac{2x + 1 - x^2}{1 + x^2} = \frac{\sqrt{7}}{2} \] 5. **Cross-multiply to eliminate the fraction:** \[ 2(2x + 1 - x^2) = \sqrt{7}(1 + x^2) \] Simplifying gives: \[ 4x + 2 - 2x^2 = \sqrt{7} + \sqrt{7}x^2 \] 6. **Rearranging the equation:** \[ (2 + \sqrt{7})x^2 - 4x + (2 - \sqrt{7}) = 0 \] 7. **Using the quadratic formula to solve for \( x \):** \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 2 + \sqrt{7} \), \( b = -4 \), and \( c = 2 - \sqrt{7} \). 8. **Calculating the discriminant:** \[ b^2 - 4ac = (-4)^2 - 4(2 + \sqrt{7})(2 - \sqrt{7}) = 16 - 4[(2)(2) - (7)] = 16 - 4(4 - 7) = 16 - 4(-3) = 16 + 12 = 28 \] 9. **Substituting back into the quadratic formula:** \[ x = \frac{4 \pm \sqrt{28}}{2(2 + \sqrt{7})} = \frac{4 \pm 2\sqrt{7}}{4 + 2\sqrt{7}} \] 10. **Simplifying the expression:** \[ x = \frac{2 \pm \sqrt{7}}{2 + \sqrt{7}} \] 11. **Choosing the appropriate solution:** Since \( A < \frac{\pi}{6} \), \( \tan\left(\frac{A}{2}\right) \) must be positive and less than 1. Thus, we take: \[ x = \frac{2 - \sqrt{7}}{2 + \sqrt{7}} \] 12. **Rationalizing the denominator:** \[ x = \frac{(2 - \sqrt{7})(2 - \sqrt{7})}{(2 + \sqrt{7})(2 - \sqrt{7})} = \frac{(2 - \sqrt{7})^2}{4 - 7} = \frac{4 - 4\sqrt{7} + 7}{-3} = \frac{11 - 4\sqrt{7}}{-3} \] ### Final Result: Thus, the value of \( \tan\left(\frac{A}{2}\right) \) is: \[ \tan\left(\frac{A}{2}\right) = \frac{2 - \sqrt{7}}{2 + \sqrt{7}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

sinA+cosA=sqrt2 then sin AxxcosA

If (3pi)/(2)ltAlt2pi and sinA=-7//25 , then

If sinA+cosA=sqrt(2), then the value of cos^(2) A is

If (sinA)/(sinB)=(sqrt(3))/(2) and (cosA)/(cosB)=(sqrt(5))/(2) , 0 lt A, B lt (pi)/(2) then tanA+tanB is equal to :

If sinA-cosA=(sqrt(3)-1)/(2) , then the value of sin A . cos A is

If tanA=sqrt2-1 then prove that sinA cosA=1/(2sqrt2)

If 0 lt a lt (pi)/(2) and sinA +cosA+tanA+cotA+secA+cosecA = 7, sinA and cosA are roots of equation 4x^(2) -3x +alpha = 0 , then the value of |(25alpha)/(4)| is _____________.

If 0 ltA lt(pi//2)and0 ltB lt(pi//2), then angle (A-B) lies in…….. Quadrant.

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

OBJECTIVE RD SHARMA-TRIGONOMETRIC RATIOS AND IDENTITIES-Exercise
  1. If sinA+cosA=m an sin^(3)A+cos^(3)A=n, then

    Text Solution

    |

  2. If cosA+cosB=m and sinA+sinB=n then sin(A+B)=

    Text Solution

    |

  3. If ltA lt(pi)/(6) and sinA+cosA=(sqrt7)/(2),"then" tan""(A)/(2)=

    Text Solution

    |

  4. The value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""(7pi)...

    Text Solution

    |

  5. If n=pi/(4alpha), then tanalpha tan 2alpha tan 3 alpha........tan(2n-1...

    Text Solution

    |

  6. the value of tan9^@-tan2 7^@-tan6 3^@+tan8 1^@ is equal to

    Text Solution

    |

  7. For x in R, tanx+1/2tan""(1)/(2^(2))tan""(x)/(2^(2))+...+(1)/(2^(n-1...

    Text Solution

    |

  8. If (tan3A)/(tanA)=k, then (sin3A)/(sinA)=

    Text Solution

    |

  9. If y=(sec^(2)theta-tantheta)/(sec^(2)theta+tantheta)'then

    Text Solution

    |

  10. If cosA=tanB, cos B=tanC, cosC=tanA, then sin A is equal to

    Text Solution

    |

  11. If A(1)A(2)A(3)A(4)A(5) be regular pentgon inscribed in anunit circle....

    Text Solution

    |

  12. If tanalpha is equal to the integral solution of the inequality 4x^2-1...

    Text Solution

    |

  13. If (x)/(cos theta)=(y)/(cos(theta-(2pi)/(2)))=(2)/(cos(theta+(2pi)/(3)...

    Text Solution

    |

  14. If cos A=3/4 then the value of sin(A/2) sin((5A)/2) is

    Text Solution

    |

  15. The minimum value of 9tan^2theta+4cot^2theta is

    Text Solution

    |

  16. If x(1),x(2),x(3),...,x(n) are in A.P. whose common difference is alph...

    Text Solution

    |

  17. If asin^2x+bcos^2x=c,bsin^2y+acos^2y=d and atanx=btany then a^2/b^2=.....

    Text Solution

    |

  18. If a (n+1)=sqrt((1)/(2)(1+a(n)))then cos((sqrt(1-a(0)^(2)))/(a(1)a(2)a...

    Text Solution

    |

  19. If alpha,beta,gamma,delta are the smallest positive angles in ascendin...

    Text Solution

    |

  20. The value of cosycos(pi/2-x)-cos(pi/2-y)cosx+sinycos(pi/2-x)+cosxsin(p...

    Text Solution

    |