Home
Class 12
MATHS
If sin alpha=sinbeta and cos alpha=cosbe...

If `sin alpha=sinbeta and cos alpha=cosbeta,` then

A

`sin""(alpha+beta)/(2)=0`

B

`cos""(alpha+beta)/(2)=0`

C

`sin""(alpha-beta)/(2)=0`

D

`cos""((alpha-beta)/(2))=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \sin \alpha = \sin \beta \) and \( \cos \alpha = \cos \beta \), we can follow these steps: ### Step-by-Step Solution: 1. **Start with the given equations:** \[ \sin \alpha = \sin \beta \quad \text{and} \quad \cos \alpha = \cos \beta \] 2. **Rearrange the sine equation:** \[ \sin \alpha - \sin \beta = 0 \] Using the sine difference identity, we can rewrite this as: \[ 2 \sin\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right) = 0 \] This gives us two possible cases: - \( \sin\left(\frac{\alpha + \beta}{2}\right) = 0 \) - \( \cos\left(\frac{\alpha - \beta}{2}\right) = 0 \) 3. **Rearrange the cosine equation:** \[ \cos \alpha - \cos \beta = 0 \] Using the cosine difference identity, we can rewrite this as: \[ 2 \sin\left(\frac{\alpha + \beta}{2}\right) \sin\left(\frac{\alpha - \beta}{2}\right) = 0 \] This gives us two possible cases: - \( \sin\left(\frac{\alpha + \beta}{2}\right) = 0 \) - \( \sin\left(\frac{\alpha - \beta}{2}\right) = 0 \) 4. **Analyze the equations:** From both sets of equations, we see that: - If \( \sin\left(\frac{\alpha - \beta}{2}\right) = 0 \), then \( \frac{\alpha - \beta}{2} = n\pi \) for some integer \( n \), which implies \( \alpha - \beta = 2n\pi \) or \( \alpha = \beta + 2n\pi \). - If \( \sin\left(\frac{\alpha + \beta}{2}\right) = 0 \), then \( \frac{\alpha + \beta}{2} = m\pi \) for some integer \( m \), which implies \( \alpha + \beta = 2m\pi \). 5. **Conclusion:** Since both conditions lead to the conclusion that \( \alpha \) and \( \beta \) must be equal (considering the periodic nature of sine and cosine), we can conclude: \[ \alpha = \beta + 2n\pi \quad \text{or} \quad \alpha = \beta \] ### Final Result: Thus, if \( \sin \alpha = \sin \beta \) and \( \cos \alpha = \cos \beta \), then: \[ \alpha = \beta + 2n\pi \quad \text{(for some integer } n\text{)} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If sinalpha+sinbeta=a and coslapha+cosbeta=b then prove that sin(alpha+beta)=(2ab)/(a^2+b^2)

Let alpha, beta be such that pi lt alph-betalt3piif sin alpha+sinbeta=-21/65and cos alpha+cos beta =-27/65, then the value of cos""(alpha-beta)/(2), is

sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of sin(alpha+beta)

sin alpha+ sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of tan (alpha+beta) is

If A=[(0,sin alpha, sinalpha sinbeta),(-sinalpha, 0, cosalpha cosbeta),(-sinalpha sinbeta, -cosalphacosbeta, 0)] then (A) |A| is independent of alpha and beta (B) A^-1 depends only on beta (C) A^-1 does not exist (D) none of these

If cos alpha+cos beta=0=sin alpha+sinbeta, then cos2alpha+cos 2beta=

A = [[0, sin alpha, sin alpha sin beta-sin alpha, 0, cos alpha cos beta-sin alpha sin beta, -cos alpha cos beta, 0]]

If sinalpha+cosbeta=5/4 and cosalpha+sinbeta=3/4 , then value of sin(alpha+beta)=?

Let alphaandbeta be such that piltalpha-betalt3pi . If sinalpha+sinbeta=-(21)/(65)and cosalpha+cosbeta=-(27)/(65) , then the value of "cos"((alpha-beta))/(2) is

(cos alpha + cos beta)/( sin alpha - sin beta) + (sin alpha + sin beta)/( cos alpha - cos beta ) =