Home
Class 12
MATHS
tan 5x tan3x tan2x=...

tan 5x tan3x `tan2x=`

A

`tan5x-tan3xtan2x`

B

`(sin5x-sin3x-sin2x)/(cos5x-cos3x-cos2x)`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan 5x \tan 3x \tan 2x \), we can use the tangent addition formula. The tangent addition formula states: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] ### Step-by-Step Solution: 1. **Identify the angles**: We have \( 5x \), \( 3x \), and \( 2x \). We can express \( \tan 5x \) in terms of \( \tan 2x \) and \( \tan 3x \). 2. **Apply the tangent addition formula**: \[ \tan 5x = \tan(2x + 3x) = \frac{\tan 2x + \tan 3x}{1 - \tan 2x \tan 3x} \] 3. **Substitute into the original expression**: \[ \tan 5x \tan 3x \tan 2x = \left(\frac{\tan 2x + \tan 3x}{1 - \tan 2x \tan 3x}\right) \tan 3x \tan 2x \] 4. **Multiply through**: \[ = \frac{(\tan 2x + \tan 3x) \tan 3x \tan 2x}{1 - \tan 2x \tan 3x} \] 5. **Simplify the numerator**: \[ = \frac{\tan 2x \tan 3x + \tan^2 3x \tan 2x}{1 - \tan 2x \tan 3x} \] 6. **Rearranging**: We can also express \( \tan 3x \) in terms of \( \tan 2x \) and \( \tan x \) if needed, but we will keep it in this form for now. 7. **Final expression**: The expression simplifies to: \[ \tan 5x \tan 3x \tan 2x = \frac{\tan 2x + \tan 3x}{1 - \tan 2x \tan 3x} \tan 3x \tan 2x \] 8. **Conclusion**: After checking the options, we find that none of the options match our derived expression. ### Final Answer: None of these.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

tan 5x.tan3x.tan 2x =

Statement I: If (1+tan A)(1+tan B)=2 then A+B=45^(@) or 225^(@) Statement II :tan5x+tan3x+tan2x=tan5x tan3x tan2x

tan5x.tan3x*tan2x =

int tan x tan2x tan3xdx=

STATEMENT-1 : int tan5xtan3xtan2xdx is equal to (log|sec5x|)/(5)-(log|sec3x|)/(3)-(log|sec2x|)/(2)+c and STATEMENT-2: tan5x-tan3x-tan2x=tan5xtan3xtan2x .

tan3x-tan2x-tan x=tan3x tan2x tan x

Evaluate : int tan 2x tan 3x tan 5x dx

int tan 2 x tan 3x tan 5x dx = log | sec^(a) 2x. Sec^(b) 3x. Sec^(c) 5x| + k . Then:\

int tan2x tan3x tan5xdx